

Supporting Information

Porphyrins with intense absorptivity: highly efficient sensitizers with photovoltaic efficiency of up to 10.7% without a cosensitizer and a coabsorbate

Chengming Li,^a Liang Luo,^a Di Wu,^{a,} Ruyong Jiang,^a Jingbo Lan,^a Ruilin Wang,^{b,*} Luyi Huang,^c Shengyong Yang^c and Jingsong You^a*

Table of Contents

I. General remark.....	2
II. DFT calculation detail.....	3
III. Synthesis and characterization.....	5
IV. UV-vis-NIR absorption and fluorescence spectra.....	13
V. Electrochemical data.....	14
VI. DSSC fabrication and photovoltaic performance.....	14
VII. References.....	20
VIII. Copies of ^1H and ^{13}C NMR spectra.....	21

I. General remark

¹H (400 MHz) and ¹³C (100 MHz) NMR spectra were recorded on Bruker AV II-400 MHz spectrometer. The ¹H NMR chemical shifts were measured relative to CDCl₃, TMS or DMSO-*d*₆ as internal reference (CDCl₃: δ = 7.26 ppm; TMS: δ = 0.00 ppm; DMSO-*d*₆: δ = 2.50 ppm). The ¹³C NMR chemical shifts were given using CDCl₃ or DMSO-*d*₆ as internal standard (CDCl₃: δ = 77.16 ppm; DMSO-*d*₆: δ = 39.52 ppm). High-resolution mass spectra (HRMS) were obtained with Waters-Q-TOF-Premier (ESI⁺). IR spectra was obtained with NEXUS670FT-IR. Absorption and transmittance spectra were detected on HITACHI U-2910 absorption spectrophotometer. Fluorescence spectra were collected on Horiba Jobin Yvon-Edison Fluoromax-4 fluorescence spectrometer. Cyclic voltammetry (CV) were performed on LK2005A. The measurements were performed at a scan rate of 50 mV·s⁻¹ in dry CH₃CN/THF (7/3, v/v) solution of dye containing 0.10 M of *tetra-n*-butylammonium hexafluorophosphate (TBAPF₆) as supporting electrolyte, using Ag/Ag⁺ (0.01 M of AgNO₃ in acetonitrile) as a reference electrode, a platinum wire as a counter electrode and a platinum plate as a working electrode. Energy levels were calculated with respect to a standard ferrocene/ferrocenium (Fc/Fc⁺) redox couple as an external reference.

Photoelectro-chemical characterizations on the solar cells were performed by employing an Oriel Class AAA solar simulator (Oriel 94023A, Newport Corp.). Photo-current-voltage characteristics of the DSSCs were recorded by a potentiostat/galvanostat (Keithley Series 2400 SourceMeter, Keithley Instruments, Inc.) at a light intensity of 100 mW cm⁻² calibrated by an Oriel reference solar cell (Oriel 91150V, Newport Corp.). IPCE test was performed by using a Qtest Station 1000AD (CrownTech, Inc.) which has a xenon light source and a monochromator (Czerny-Turner). The system is equipped with a NIST traceable Si detector as a reference. Short circuit photocurrent spectrum was recorded with a Keithley 2000 multimeter. Electrochemical impedance spectroscopy (EIS) was recorded using an Autolab PGSTAT 30/302 electrochemical workstation (Eco Chemie B.V., Amsterdam, the Netherlands) under dark conditions over a frequency range of 0.1–10⁵ Hz with an alternate current amplitude of 10 mV. Parameters were fitted by Z-View software (v3.1, Scribner Associates, Inc.).

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. Anhydrous solvents were freshly distilled from CaH₂ (diisopropylamine (iPr₂NH), triethylamine (Et₃N), acetonitrile (CH₃CN)) or

sodium/benzophenone (toluene, and tetrahydrofuran (THF)) before use. TBAPF₆ was recrystallized from absolute ethanol and further dried under vacuum for 48 h.

Pt-counter electrode and two types of TiO₂ films were purchased from OPV Tech (China) Co., Ltd.. A 7 μm -thick film of 20 nm TiO₂ particles as the absorbing layer coated on a FTO glass substrate with dimensions of 1.0 \times 1.0 cm² was used to determine *LHE*. A 13 μm -thick film of 20 nm TiO₂ particles as the absorbing layer covered by a 5 μm -thick film of 400 nm TiO₂ particles as the scattering layer coated on a FTO glass substrate with dimensions of 0.4 \times 0.4 cm² was used to assemble DSSCs.

II. DFT Calculation detail

The calculations were performed at TDDFT/B3LYP/6-31G(d,p) level using Gaussian 03 package.⁵¹ Ground state geometries of porphyrins were fully optimized in gas phase at DFT/B3LYP/6-31G(d,p) level using the default convergence criteria without any constraints and confirmed by frequency calculations.

Table S1. (TD)DFT optimized structure, parameter and frontier orbital profile of porphyrins.

	CM-a1	CM-b1	CM-c1	YD2- <i>o</i> -C8-1
Face view				
Side view				
$\angle_{\text{D-Por}}/^\circ$ ^a	63.8	64.55	65.18	71.12
$\angle_{\text{Por-A}}/^\circ$ ^b	0.02	1.44	1.04	2.40
$\angle_{\text{mesoph-porph}}/^\circ$ ^c	87.23	89.02	87.96	87.82
$E_{\text{L+1}}/\text{eV}$	-1.88	-1.92	-1.90	-2.03
L+1				
E_{L}/eV	-2.20	-2.24	-2.22	-2.37
L				
E_{H}/eV	-4.55	-4.66	-4.68	-4.68
H				
$E_{\text{H-1}}/\text{eV}$	-4.86	-4.96	-4.94	-5.07

H-1				
	609 (0.4586) H->L (0.67476) H-2->L+1(-0.19577)	591 (0.4731) H->L (0.65216) H-1->L+1 (0.25406)	582 (0.4157) H->L (0.63395) H-1->L+1 (0.30444)	639(0.3293) H->L (0.66657) H-1->L+1(0.18562)
Selected Excitation energy/nm (<i>f</i>) ^d	427 (1.2927) H->L+2 (0.42556) H-2->L+1 (0.42092) H-1->L+2 (0.20163)	424 (1.4619) H-1->L+1(0.42642) H->L+2 (-0.40548) H-2->L (0.23208)	424 (1.3808) H-1->L+1 (0.44206) H->L+2 (-0.41929) H->L (-0.25555)	427 (1.0511) H->L+2 (0.52230) H-1->L+1(-0.36821) H-2->L (-0.20932)
Assignment (coefficient) ^e	419 (0.4723) H-1->L+1(0.42755) H-2->L (-0.41863) H-2->L+2(-0.29849) H->L+1 (-0.29849)	417 (0.4731) H-1->L (0.39138) H-2->L+1 (-0.38280) H-1->L+2 (0.28785) H->L+1 (0.27138)	415 (0.4114) H-2->L+1 (0.41896) H-1->L (-0.37449) H-1->L+2(-0.29700) H->L+1 (-0.29137)	413 (0.4671) H-2->L+1 (0.46163) H-1->L (-0.37943) H-1->L+2(-0.27897) H->L+1 (-0.21798)
	403 (0.6482) H->L+2 (0.53671) H-2->L+1 (-0.30556)	392 (0.5506) H->L+2 (0.52011) H-1->L+1 (0.27532)	388 (0.4543) H->L+2 (0.50125) H-1->L+1 (0.29321)	404 (0.7432) H->L+2 (0.43483) H-1->L+1 (0.38086)

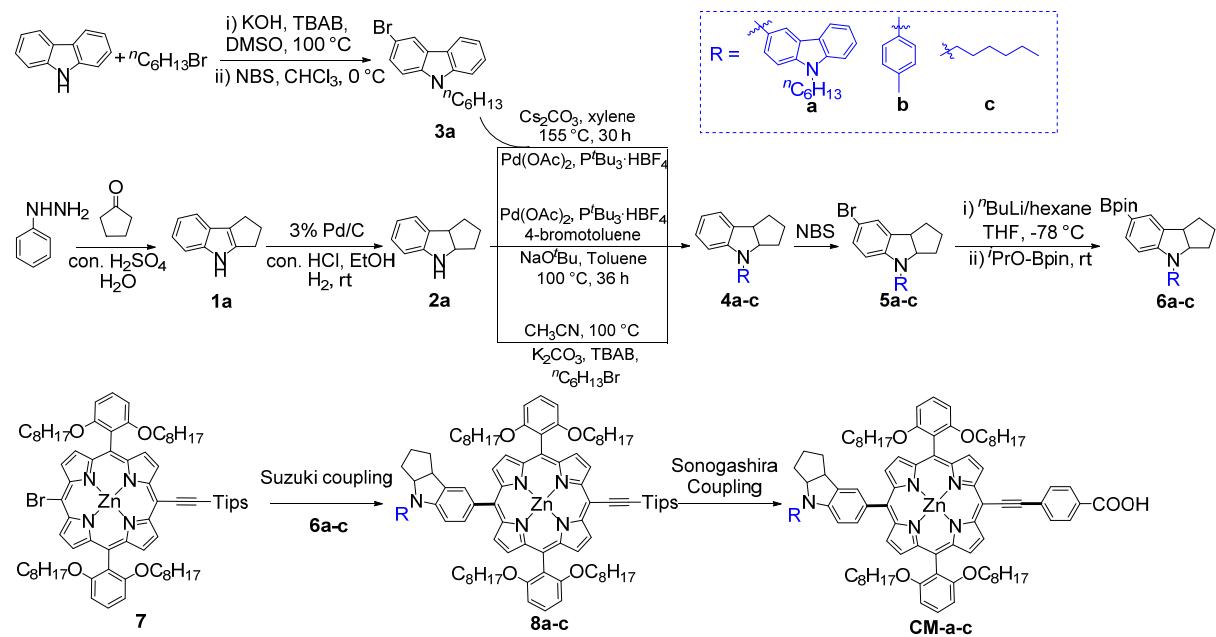

Dihedral angles between porphyrin plane and ^a 10-donor; ^b 20-acceptor and ^c 5,15-Bis(2,6-dioctoxyphenyl). ^d Excited energies with *f* over 0.4 are listed. ^e Assignment with coefficient over 0.18 are listed. L: LUMO; H: HOMO.

Table S2. TDDFT calculated parameters of porphyrins.

	<i>f</i> _B	λ_B/nm	$\lambda_{\text{Qx}}/\text{nm}$
XW1	0.7401	394	536
WW3	1.9640	438	601
IDB	1.7866	421	572
YD2-o-C8-1	1.0511	427	639
A1	1.3426	423	578
A2	1.6319	423	584
CM-a1	1.2927	427	609
CM-b1	1.4619	424	591
CM-c1	1.3808	424	582

*f*_B: oscillator strength of B band; λ_B and λ_{Qx} : wavelength of the peak of B and Q_x bands, respectively.

III. Synthesis and characterization

Scheme S1 Synthetic routes toward **CM-a-c**. Intermediate **7** was prepared according to the literatures.^{S2}

Compound 2a:^{S3} Concentrated sulfuric acid (3.5 mL) was added dropwise to a mixture of phenyl hydrazine (51 mmol, 5 mL), cyclopentanone (4.5 mL, 51 mmol) and water (30 mL). The mixture was heated to reflux for 30 min and then allowed to cool to room temperature. The liquid was decanted from the reaction mixture, leaving a red and gummy solid. *n*-Hexane (50–60 mL) was added to the flask and the mixture was heated to reflux. The yellow hexane solution was decanted while the mixture was hot and placed in the freezer (crystallization begins immediately). *n*-Hexane was added again and the recrystallization procedure was repeated twice. After 1 h in the freezer, the white solid was collected from the flask and dried, providing the known indole **1a** (4.11 g, 51%). ¹H NMR (400 MHz, CDCl₃): δ = 2.54–2.61 (m, 2H), 2.86–2.89 (m, 4H), 7.10–7.14 (m, 2H), 7.28–7.31 (m, 1H), 7.46–7.49 (m, 1H), 7.45 (brs, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 24.6, 25.9, 28.8, 111.5, 118.6, 119.6, 119.8, 120.6, 124.8, 141.1, 143.9 ppm.

A mixture of 1,2,3,4-tetrahydrocyclopenta[b]indole (6.25 g, 39.8 mmol), 3% Pd/C (3.30 g), and concentrated hydrochloric acid (4.2 mL) in ethanol (EtOH) (70 mL) was hydrogenated at 10 atm on a Parr shaker. After 3 h, the mixture was removed from the shaker and filtered through Celite. The solid was washed with methanol (MeOH). The filtrate was concentrated. The crude oil was dissolved in 1 N HCl and washed with ether. The aqueous phase was treated with 2.5 N NaOH to pH >10 and then extracted with chloroform. The combined chloroform extracts were dried over Na₂SO₄, filtered and concentrated to give the crude

indoline. The material was purified by flash column chromatography (silica gel) using ethyl acetate (EtOAc)/petroleum ether (PE) (1/15, v:v) as eluent to give **2a** (4.93 g, 78%). ¹H NMR (400 MHz, CDCl₃): δ = 1.51-1.82 (m, 5H), 1.91-2.01 (m, 1H), 3.78 (m, 2H), 4.34-4.39 (m, 1H), 6.53 (d, J = 7.6 Hz, 1H), 6.68 (td, J = 7.2 Hz, 0.8 Hz, 1H), 6.99 (t, J = 7.6 Hz, 1H), 7.04 (d, J = 7.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 24.5, 35.0, 37.1, 47.3, 63.5, 108.5, 118.4, 124.6, 127.5, 133.5, 151.5 ppm.

Compound 3a was prepared according to the literature.⁸⁴ 50% KOH (aq) (35 g) was added to a stirred solution of carbazole (10 g, 60 mmol) and tetrabutylammonium bromide (TBAB; 0.40 g, 1.2 mmol) in dimethylsulfoxide (DMSO; 50 mL). Then *n*-hexylbromide (11.6 g, 70.3 mmol) was added dropwise. After complete addition, the reaction mixture was heated at 100 °C for 30 h. The organic layer was separated, washed with water, dried over Na₂SO₄ and concentrated. Pure product was obtained as a white solid (13.51 g, 90%). ¹H NMR (400 MHz, CDCl₃): δ = 0.88-0.91 (m, 3H), 1.33-1.43 (m, 6H), 1.85-1.93 (m, 2H), 4.32 (t, J = 7.6 Hz, 2H), 7.24-7.28 (m, 2H), 7.42-7.52 (m, 4H), 8.14 (d, J = 7.6 Hz, 2H) ppm.

In a flask, covered with aluminum foil, a stirred solution of 9-hexylcarbazole (5 g, 20 mmol) in chloroform (CHCl₃; 100 mL) was cooled to 0 °C. *N*-bromosuccinimide (NBS; 3.56 g, 20.0 mmol) was added in small portions. The mixture was allowed to warm to room temperature overnight. CHCl₃ was evaporated and the crude product was purified by column chromatography (silica gel) using petroleum ether (PE) as eluent. The final product was obtained as white crystals (5.8 g, 88%). ¹H NMR (400 MHz, CDCl₃): δ = 0.93 (t, J = 7.2 Hz, 3H), 1.29-1.41 (m, 6H), 1.84-1.91 (m, 2H), 4.28 (t, J = 7.2 Hz, 2H), 7.28-7.31 (m, 2H), 7.44 (d, J = 8.0 Hz, 1H), 7.52-7.60 (m, 2H), 8.09 (d, J = 8.0 Hz, 1H), 8.25 (d, J = 2.0 Hz, 1H) ppm.

Compound 4a: A flame-dried Schlenk flask was charged with **2a** (1.6 g, 10 mmol), 3-bromo-9-hexylcarbazole **3a** (3.63 g, 11 mmol), Pd(OAc)₂ (112 mg, 0.5 mmol), tri-*tert*-butylphosphine tetrafluoroborate (P'Bu₃·HBF₄; 290.1 mg, 1 mmol), Cs₂CO₃ (0.46 g, 1.4 mmol) and xylene (25 mL). The mixture was stirred at 155 °C for 30 h in an oil bath. After being cooling down, the reaction mixture was filtered through a Celite pad and then washed with 10-20 mL of dichloromethane (CH₂Cl₂). The solvent of the filtrate was removed under reduced pressure. The residue was purified by column chromatography (silica gel, CH₂Cl₂/PE = 1/10 to 1/5 to 1/3 (v:v)) to give **4a** as yellow oil (2.70 g, 66%). ¹H NMR (400 MHz, CDCl₃): δ = 0.91 (t, J = 7.2 Hz, 3H), 1.30-1.48 (m, 6H), 1.66-1.80 (m, 3H), 1.87-1.96 (m, 3H), 2.01-2.13 (m, 2H), 3.91 (s, 1H), 4.31 (t, J = 6.8 Hz, 2H), 4.89 (s, 1H), 6.71-6.76 (m, 2H), 7.04 (t, J = 7.6 Hz, 1H), 7.16 (d, J = 7.2 Hz, 1H), 7.23 (t, J = 7.6 Hz, 1H), 7.39-7.53 (m, 4H), 8.04 (s, 1H), 8.08 (d, J = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 14.2, 22.7, 24.6, 27.2,

29.2, 31.7, 33.9, 35.5, 43.3, 45.8, 70.6, 106.6, 108.9, 109.3, 114.7, 117.5, 118.7, 120.5, 121.9, 122.6, 123.5, 124.7, 125.8, 127.4, 134.4, 135.5, 137.3, 141.0 ppm. IR (KBr): 2953, 2929, 2860, 1603, 1487, 1462, 1377, 1259, 1153, 1024, 849, 802, 742 cm^{-1} . HRMS (ESI $^+$): calcd for $\text{C}_{29}\text{H}_{32}\text{NaN}_2$ [M+Na] $^+$ 431.2463, found 431.2466.

Compound 4b:⁵⁵ The mixture of **2a** (1.43 g, 9 mmol), 4-bromotoluene (1.65 g, 9.3 mmol), $\text{Pd}(\text{OAc})_2$ (101.1 mg, 0.45 mmol), $\text{P}^t\text{Bu}_3\text{HBF}_4$ (261.9 mg, 0.9 mmol) and sodium *tert*-butoxide (NaO^tBu ; 1.21 g, 12.6 mmol) in toluene (10 mL) was heated at 100 °C under N_2 for 36 h. After being cooling down, the reaction mixture was filtered through a Celite pad, and then washed with 30 mL of CH_2Cl_2 . The solvent of the filtrate was removed under reduced pressure. The residue was purified by column chromatography (silica gel) using $\text{CH}_2\text{Cl}_2/\text{PE} = 1/15$ ($v:v$) as eluent to give **4b** as yellow oil (2.10 g, 93%). ^1H NMR (400 MHz, CDCl_3): δ = 1.56-1.67 (m, 2H), 1.79-1.98 (m, 3H), 2.01-2.08 (m, 1H), 2.36 (s, 3H), 3.85 (td, J = 8.4 Hz, 2.4 Hz, 1H), 4.75-4.80 (m, 1H), 6.73 (td, J = 7.2 Hz, 0.8 Hz, 1H), 6.95 (d, J = 8.0 Hz, 1H), 7.06 (t, J = 7.6 Hz, 1H), 7.13-7.18 (m, 3H), 7.21-7.23 (m, 2H) ppm.

Compound 4c:⁵⁶ The mixture of **2a** (1.43 g, 9 mmol), TBAB (60 mg, 0.19 mmol), 1-bromohexane ($^n\text{C}_6\text{H}_{13}\text{Br}$; 3 mL) and K_2CO_3 (4.14 g, 30 mmol) in CH_3CN (10 mL) was heated at 100 °C under N_2 for 36 h. The organic layer was separated and concentrated. The residue was purified by column chromatography (silica gel) using PE as eluent to give **4c** as colorless oil (2.02 g, 91%). ^1H NMR (400 MHz, CDCl_3): δ = 0.90 (t, J = 6.4 Hz, 3H), 1.32-1.36 (m, 6H), 1.50-1.69 (m, 5H), 1.72-1.78 (m, 1H), 1.82-1.86 (m, 1H), 1.92-2.01 (m, 1H), 3.04-3.18 (m, 2H), 3.70 (td, J = 8.8 Hz, 2.8 Hz, 1H), 4.14-4.17 (m, 1H), 6.28 (d, J = 8.8 Hz, 2H), 6.54 (t, J = 7.2 Hz, 1H), 6.98-7.03 (m, 2H) ppm. ^{13}C NMR (100 MHz, CDCl_3): δ = 14.2, 22.8, 24.7, 27.2, 27.4, 31.9, 33.6, 35.2, 45.9, 47.0, 69.2, 105.1, 116.0, 124.2, 127.5, 133.7, 152.3 ppm.

Compound 5a was prepared according to the reported procedure. To a solution of **4a** (8.8 g, 21.6 mmol) in CHCl_3 (90 mL) was added dropwise a solution of NBS (4.24 g, 24 mmol) in CHCl_3 (260 mL) under N_2 . After be stirring at room temperature overnight, the reaction mixture was quenched with acetone. CHCl_3 was evaporated under reduced pressure and the residue was purified by column chromatography (silica gel, sequential PE, $\text{CH}_2\text{Cl}_2/\text{PE} = 1/10$ ($v:v$)) to give **5a** as a yellow thick oil (8.03 g, 76%). ^1H NMR (400 MHz, $\text{DMSO}-d_6$): δ = 0.78-0.84 (m, 3H), 1.21-1.27 (m, 6H), 1.45-1.52 (m, 1H), 1.62-1.75 (m, 6H), 1.95-1.90 (m, 1H), 3.81 (t, J = 8.4 Hz, 1H), 4.34 (t, J = 6.8 Hz, 2H), 4.89 (t, J = 6.8 Hz, 1H), 6.50 (d, J = 8.4 Hz, 1H), 7.04 (d, J = 8.0 Hz, 1H), 7.15 (t, J = 7.2 Hz, 1H), 7.20 (s, 1H), 7.35 (d, J = 8.4 Hz, 1H), 7.42 (t, J = 7.6 Hz, 1H), 7.54-7.58 (m, 2H), 8.05 (s, 1H), 8.13 (d, J = 8.0 Hz, 1H) ppm. ^{13}C NMR (100 MHz, $\text{DMSO}-d_6$): δ = 13.9, 22.1, 24.0, 26.2, 28.6, 31.0, 33.0, 35.1, 42.3, 44.7,

69.8, 107.2, 109.3, 110.0, 114.3, 118.5, 120.6, 121.4, 121.7, 122.7, 125.9, 127.1, 129.7, 134.0, 136.8, 140.5, 148.9 ppm. IR (KBr): 2953, 2927, 2860, 1595, 1487, 1375, 1255, 1155, 1020, 876, 802, 744 cm^{-1} . HRMS (ESI $^+$): calcd for $\text{C}_{29}\text{H}_{32}\text{BrN}_2$ [M+H] $^+$ 487.1749, found 487.1736.

Compound 5b:⁵⁵ The procedure was similar to that described for **5a**. **4b** (4 g, 16 mmol) in CHCl_3 (90 mL) and NBS (3.14 g, 17.6 mmol) in CHCl_3 (160 mL) were used. Purification via column chromatography was performed using PE and $\text{CH}_2\text{Cl}_2/\text{PE} = 1/10$ to $1/5$ (v:v) sequentially to give **5b** as a white solid (2.97 g, 56%). ^1H NMR (400 MHz, CDCl_3): δ = 1.49-1.59 (m, 1H), 1.63-1.68 (m, 1H), 1.74-1.89 (m, 3H), 1.98-2.06 (m, 1H), 2.34 (s, 3H), 3.80 (td, J = 8.4 Hz, 2.4 Hz, 1H), 4.74-4.78 (m, 1H), 6.75 (d, J = 8.4 Hz, 1H), 7.10 (dd, J = 8.4 Hz, 2.0 Hz, 1H), 7.16 (m, 4H), 7.18 (s, 1H) ppm. ^{13}C NMR (100 MHz, CDCl_3): δ = 20.9, 24.5, 33.9, 35.1, 45.4, 69.4, 108.9, 109.3, 120.1, 127.6, 129.8, 129.9, 131.7, 137.3, 140.4, 147.3 ppm.

Compound 5c:⁵⁶ The procedure was similar to that described for **5a**. **4c** (2 g, 8.2 mmol) in CHCl_3 (90 mL) and NBS (1.8 g, 10 mmol) in CHCl_3 (100 mL) were used. PE was used as eluent to perform column chromatography to give **5c** as yellow oil (1.74 g, 64%). ^1H NMR (400 MHz, CDCl_3): δ = 0.89 (t, J = 6.8 Hz, 3H), 1.30 (s, 6H), 1.45-1.56 (m, 3H), 1.58-1.67 (m, 2H), 1.69-1.75 (m, 1H), 1.80-1.84 (m, 1H), 1.90-1.99 (m, 1H), 2.99-3.11 (m, 2H), 3.66 (td, J = 8.8 Hz, 2.4 Hz, 1H), 4.15-4.19 (m, 1H), 6.11 (d, J = 8.0 Hz, 1H), 7.03-7.07 (m, 2H) ppm. ^{13}C NMR (100 MHz, CDCl_3): δ = 14.2, 22.8, 24.6, 27.10, 27.12, 31.8, 33.5, 35.2, 45.7, 46.6, 69.2, 106.1, 107.0, 127.1, 130.0, 36.0, 151.3 ppm.

Compound 6a: *n*-Butyllithium ("BuLi; 2.5 M hexane solution, 2.4 mL) was added dropwise to a solution of **5a** (2.44 g, 5 mmol) in THF (30 mL) at -78 °C under N_2 . The mixture was stirred at -78 °C for 1 h and 2-isopropoxy-4,4,5,5-tetramethyl[1,3,2]dioxaborolane (1.5 mL, 7.5 mmol) was added subsequently. The mixture was allowed to warm to room temperature and stirred for 3 h. Thereafter, water was added carefully to quench the reaction. The organic layer was separated and the aqueous phase was extracted with EtOAc. The combined organic phases were dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. Purification via column chromatography was performed with PE and EtOAc/PE = 1/30 (v:v) as eluent sequentially to give **6a** as a colorless solid (1.33 g, 59%). Mp: 138–140 °C. ^1H NMR (400 MHz, CDCl_3): δ = 0.87-0.90 (m, 3H), 1.25-1.34 (m, 16H), 1.39-1.44 (m, 2H), 1.60-1.73 (m, 3H), 1.85-2.06 (m, 5H), 3.87 (t, J = 8.4 Hz, 1H), 4.29 (t, J = 7.2 Hz, 2H), 4.88-4.91 (m, 1H), 6.66 (dd, J = 8.0, 4.0 Hz, 1H), 7.19-7.23 (m, 1H), 7.39-7.41 (m, 3H), 7.45-7.53 (m, 2H), 7.59 (s, 1H), 7.99 (s, 1H), 8.04 (d, J = 7.6 Hz, 1H) ppm. ^{13}C NMR (100 MHz, CDCl_3): δ = 14.2, 22.7, 24.5, 24.9, 25.1, 27.2, 29.2, 31.7, 33.6, 35.6, 43.4, 45.5, 70.7, 83.2, 105.8, 108.9, 109.4, 115.4, 118.8, 120.5, 122.4, 122.6, 123.6, 125.9, 131.1, 133.7, 134.5,

135.5, 137.6, 141.1, 153.1 ppm. IR (KBr): 2929, 2858, 1605, 1487, 1439, 1377, 1350, 1269, 1144, 964, 860, 806, 746 cm^{-1} . HRMS (ESI $^+$): calcd for $\text{C}_{35}\text{H}_{43}\text{BN}_2\text{NaO}_2$ [M+Na] $^+$ 557.3315, found 557.3317.

Compound 6b:⁵⁵ **5b** (1.32 g, 4 mmol) in THF (20 mL) was used in the similar synthesis procedure to that of **6a**. Column chromatography purification was employed with EtOAc/PE = 1/100 to 1/40 (v:v) as eluent to give **6b** as a white solid (1.45 g, 55%). ^1H NMR (400 MHz, CDCl_3): δ = 1.33 (s, 6H), 1.34 (s, 6H), 1.46-1.55 (m, 1H), 1.61-1.66 (m, 1H), 1.70-1.79 (m, 1H), 1.86-1.93 (m, 2H), 1.96-2.02 (m, 1H), 2.33 (s, 3H), 3.80 (td, J = 8.4, 2.4 Hz, 1H), 4.77-4.82 (m, 1H), 6.84 (d, J = 8.0 Hz, 1H), 7.14-7.20 (m, 4H), 7.52 (d, J = 8.0 Hz, 1H), 7.55 (s, 1H) ppm.

Compound 6c: 5c (1.29 g, 4 mmol) in THF (20 mL) was used in the similar synthesis procedure to that of **6a**. Column chromatography purification was employed with EtOAc/PE = 1/100 to 1/40 (v:v) as eluent to give **6c** as colorless oil (670 mg, 45%). ^1H NMR (400 MHz, CDCl_3): δ = 0.88-0.91 (m, 3H), 1.32-1.38 (m, 17H), 1.45-1.68 (m, 6H), 1.78-1.86 (m, 2H), 1.90-1.99 (m, 1H), 3.06-3.25 (m, 2H), 3.68-3.72 (m, 1H), 4.20-4.23 (m, 1H), 6.25 (d, J = 8.0 Hz, 1H), 7.43 (s, 1H), 7.53 (d, J = 8.0 Hz, 1H) ppm. ^{13}C NMR (100 MHz, CDCl_3): δ = 14.2, 22.8, 24.5, 24.9, 25.0, 27.0, 27.2, 31.8, 33.3, 35.3, 45.4, 45.7, 104.0, 130.4, 132.9, 135.7, 154.8 ppm. IR (KBr): 2927, 2858, 1459, 1451, 1376, 1350, 1265, 1124, 973, 861, 806, 744 cm^{-1} . HRMS (ESI $^+$): calcd for $\text{C}_{23}\text{H}_{36}\text{BNNaO}_2$ [M+Na] $^+$ 392.2737, found 392.2741.

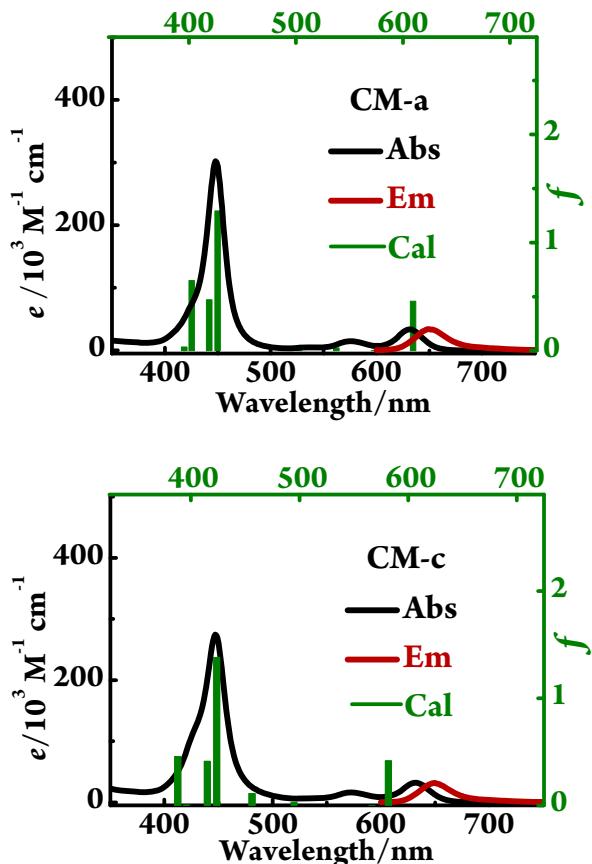
Compound 8a: Following the general procedure, the mixture of **7** (260 mg, 0.2 mmol), **6a** (134.8 mg, 0.3 mmol), $\text{Pd}(\text{PPh}_3)_4$ (46.4 mg, 0.04 mmol), Cs_2CO_3 (0.33 g, 1 mol) and toluene (10 mL) was stirred at 110 °C for 48 h. The residue was purified by column chromatography (silica gel, $\text{CH}_2\text{Cl}_2/\text{PE}$ = 1/3 to 1/2 (v:v)) to give **8a** as a fuchsia solid (270 mg, 58%). Mp: 92–94 °C. ^1H NMR (400 MHz, CDCl_3): δ = 0.34-0.64 (m, 42H), 0.69-0.82 (m, 8H), 0.88-0.98 (m, 11H), 1.32-1.39 (m, 5H), 1.42-1.50 (m, 24H), 1.83-1.97 (m, 5H), 2.14-2.21 (m, 3H), 3.79-3.85 (m, 8H), 4.11-4.16 (m, 1H), 4.35 (t, J = 7.2 Hz, 2H), 5.14-5.18 (m, 1H), 6.97-7.01 (m, 4H), 7.09 (d, J = 8.0 Hz, 1H), 7.22-7.26 (m, 1H), 7.42-7.51 (m, 3H), 7.64-7.70 (m, 3H), 7.79 (dd, J = 8.0, 1.2 Hz, 1H), 7.94 (s, 1H), 8.15 (d, J = 8.0 Hz, 1H), 8.25 (d, J = 2.0 Hz, 1H), 8.80 (d, J = 4.8 Hz, 1H), 8.84 (d, J = 4.8 Hz, 1H), 8.90-8.92 (m, 2H), 9.00 (d, J = 4.8 Hz, 1H), 9.03 (d, J = 4.4 Hz, 1H), 9.70 (dd, J = 4.8, 0.8 Hz, 2H) ppm. ^{13}C NMR (100 MHz, CDCl_3): δ = 12.1, 13.9, 13.95, 13.97, 13.99, 14.2, 19.2, 19.3, 22.29, 22.31, 22.34, 22.7, 24.9, 25.3, 27.2, 28.7, 29.2, 31.40, 31.43, 31.45, 31.8, 34.2, 35.9, 43.4, 46.0, 68.8, 68.9, 70.9, 95.7, 98.4, 104.6, 105.5, 105.6, 108.8, 109.4, 110.4, 114.3, 114.5, 118.6, 120.6, 121.62, 121.64, 121.8, 122.7, 123.3, 123.6, 125.8, 129.8, 130.6, 130.68, 130.72, 131.4, 132.1, 132.35, 132.41, 132.5, 132.8,

134.6, 135.5, 137.3, 141.0, 149.3, 150.2, 150.4, 150.95, 150.98, 152.6, 160.1, 160.2 ppm. IR (KBr): 2926, 2858, 2137, 1587, 1489, 1458, 1377, 1248, 1097, 999, 883, 796, 714 cm^{-1} . HRMS (ESI $^+$): calcd for $\text{C}_{104}\text{H}_{135}\text{N}_6\text{O}_4\text{SiZn} [\text{M}+\text{H}]^+$ 1623.9606, found 1623.9613.

Compound 8b: Following the general procedure, the mixture of **7** (360 mg, 0.28 mmol), **6b** (168.9 mg, 0.45 mmol), $\text{Pd}(\text{PPh}_3)_4$ (69.3 mg, 0.06 mmol), Cs_2CO_3 (490 mg, 1.5 mol) and toluene (10 mL) was stirred at 110 $^{\circ}\text{C}$ for 48 h. The residue was purified by column chromatography (silica gel) using $\text{CH}_2\text{Cl}_2/\text{PE} = 1/4$ ($v:v$) as eluent to give **8b** as a fuchsia solid (290 mg, 71%). Mp: 82–84 $^{\circ}\text{C}$. ^1H NMR (400 MHz, CDCl_3): δ = 0.36–0.62 (m, 43H), 0.72–0.80 (m, 8H), 0.91–0.99 (m, 8H), 1.42–1.50 (m, 22H), 1.80–1.85 (m, 2H), 1.92–2.01 (m, 1H), 2.08–2.19 (m, 3H), 2.40 (s, 3H), 3.80–3.83 (m, 8H), 4.06–4.11 (m, 1H), 5.00–5.04 (m, 1H), 6.99 (dd, J = 8.4, 1.6 Hz, 4H), 7.25–7.27 (m, 3H), 7.44 (d, J = 8.4 Hz, 2H), 7.67 (t, J = 8.4 Hz, 2H), 7.82 (dd, J = 8.0, 1.6 Hz, 1H), 7.92 (s, 1H), 8.79–8.83 (m, 2H), 8.91 (dd, J = 4.8, 1.6 Hz, 2H), 8.96 (d, J = 8.8 Hz, 2H), 9.70 (d, J = 4.8 Hz, 2H) ppm. ^{13}C NMR (100 MHz, CDCl_3): δ = 12.1, 14.0, 19.3, 21.0, 22.30, 22.33, 24.9, 25.3, 28.70, 28.72, 31.41, 31.44, 34.3, 35.5, 45.8, 68.81, 68.84, 68.9, 69.4, 95.9, 98.5, 105.49, 105.54, 105.9, 110.4, 114.4, 119.8, 121.6, 122.9, 129.9, 130.0, 130.6, 130.75, 130.77, 131.1, 131.4, 132.1, 132.2, 132.3, 133.3, 133.4, 134.3, 141.0, 147.1, 150.2, 150.3, 150.96, 151.00, 152.6, 160.1, 160.2 ppm. IR (KBr): 2926, 2860, 2139, 1587, 1514, 1485, 1456, 1375, 1250, 1097, 999, 881, 798, 714 cm^{-1} . HRMS (ESI $^+$): calcd for $\text{C}_{93}\text{H}_{122}\text{N}_5\text{O}_4\text{SiZn} [\text{M}+\text{H}]^+$ 1464.8558, found 1464.8571.

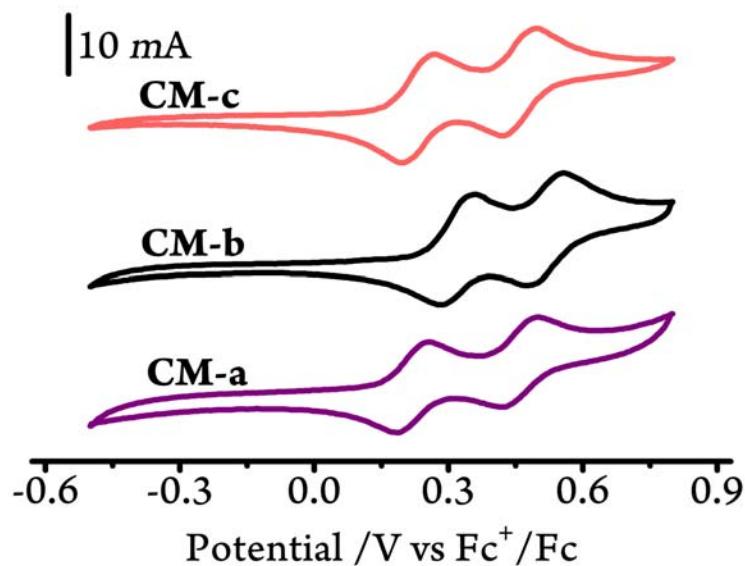
Compound 8c: Following the general procedure, the mixture of **7** (390 mg, 0.3 mmol), **6c** (166.2 mg, 0.45 mmol), $\text{Pd}(\text{PPh}_3)_4$ (69.3 mg, 0.06 mmol), Cs_2CO_3 (490 mg, 1.5 mol) and toluene (10 mL) was stirred at 110 $^{\circ}\text{C}$ for 48 h. The residue was purified by column chromatography (silica gel) using $\text{CH}_2\text{Cl}_2/\text{PE} = 1/3$ ($v:v$) as eluent to give **8c** as a fuchsia solid (330 mg, 75%). Mp: 43–45 $^{\circ}\text{C}$. ^1H NMR (400 MHz, CDCl_3): δ = 0.37–0.60 (m, 42H), 0.75–0.78 (m, 8H), 0.92–0.97 (m, 11H), 1.37–1.50 (m, 29H), 1.80 (s, 5H), 1.97–2.10 (m, 3H), 3.31–3.40 (m, 2H), 3.80–3.98 (m, 9H), 4.42–4.44 (m, 1H), 6.60 (d, J = 8.0 Hz, 1H), 6.98 (d, J = 8.4 Hz, 4H), 7.67 (t, J = 8.0 Hz, 2H), 7.77–7.80 (m, 2H), 8.78–8.80 (m, 2H), 8.90–8.98 (m, 4H), 9.69 (d, J = 4.4 Hz, 2H) ppm. ^{13}C NMR (100 MHz, CDCl_3): δ = 12.1, 13.9, 14.3, 19.3, 22.28, 22.31, 22.9, 25.0, 25.3, 27.4, 27.8, 28.7, 31.1, 31.39, 31.43, 32.0, 33.8, 35.5, 46.0, 47.3, 68.8, 68.9, 69.6, 95.7, 98.3, 103.2, 105.5, 110.4, 114.2, 121.7, 123.6, 129.7, 130.5, 130.6, 131.0, 131.1, 131.9, 132.0, 132.4, 134.8, 150.2, 150.4, 150.5, 150.90, 150.92, 151.6, 152.6, 160.1, 160.2 ppm. IR (KBr): 2926, 2860, 2139, 1587, 1495, 1456, 1379, 1248, 1099, 999, 881, 796, 714 cm^{-1} . HRMS (ESI $^+$): calcd for $\text{C}_{92}\text{H}_{128}\text{N}_5\text{O}_4\text{SiZn} [\text{M}+\text{H}]^+$ 1458.9027, found 1458.9019.

Compound CM-a: To a solution of **8a** (230 mg, 0.15 mmol) in THF (20 mL) was added


dropwise a solution of 1 M TBAF in THF (1 mL) under N₂. After being stirring at 30 °C for 3 h, the reaction mixture was quenched with water. The organic layer was separated and the aqueous phase was extracted with CH₂Cl₂. The combined organic phases were dried over anhydrous MgSO₄ and concentrated under reduced pressure. The crude product was dried under vacuum. Then the mixture of crude product, 4-iodobenzoic acid (248 mg, 1 mmol), Pd₂(dba)₃ (63 mg, 0.069 mmol), AsPh₃ (138 mg, 0.45 mmol), Et₃N (10 mL), and THF (30 mL) was stirred at 80 °C under N₂ for 8 h. After being cooling down, the reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography (silica gel) using CH₂Cl₂/MeOH = 50/1 (v:v) as eluent to give **CM-a** as a deep green solid (130 mg, 54%). Mp: 132–134 °C. ¹H NMR (400 MHz, CDCl₃/d₅-pyridine = 99/1 (v:v)): δ = 0.42–0.98 (m, 62H), 1.29–1.46 (m, 7H), 1.81–1.93 (m, 5H), 2.12–2.19 (m, 3H), 3.82–3.87 (m, 8H), 4.07–4.12 (m, 1H), 4.33 (t, *J* = 7.2 Hz, 2H), 5.11–5.14 (m, 1H), 6.98–7.05 (m, 5H), 7.21–7.25 (t, *J* = 8.0 Hz, 1H), 7.41–7.49 (m, 3H), 7.65–7.72 (m, 4H), 7.88 (s, 1H), 8.03 (d, *J* = 8.0 Hz, 2H), 8.14 (d, *J* = 8.0 Hz, 1H), 8.22 (d, *J* = 1.6 Hz, 1H), 8.28 (d, *J* = 8.0 Hz, 2H), 8.71 (d, *J* = 4.4 Hz, 1H), 8.75 (d, *J* = 4.4 Hz, 1H), 9.85–8.91 (m, 4H), 9.62 (dd, *J* = 4.0, 0.8 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃/d₅-pyridine = 99/1(v:v)): δ = 14.0, 14.07, 14.10, 14.2, 22.5, 22.7, 24.9, 25.4, 27.2, 28.8, 28.9, 29.2, 31.6, 31.8, 34.2, 35.8, 43.4, 45.9, 68.7, 68.8, 70.8, 94.0, 95.8, 98.4, 104.5, 105.3, 108.9, 109.4, 114.0, 114.3, 118.6, 120.6, 121.6, 122.1, 122.7, 123.6, 125.8, 129.5, 129.8, 130.1, 130.3, 131.0, 131.5, 131.9, 132.06, 132.12, 132.5, 133.2, 134.6, 135.7 137.2, 141.1, 148.9, 150.0, 150.1, 150.98, 151.02, 152.1, 160.15, 160.19 ppm. IR (KBr): 2924, 2854, 2189, 1689, 1601, 1489, 1456, 1416, 1377, 1248, 1097, 999, 856, 796, 719 cm⁻¹. HRMS (ESI⁺): calcd for C₁₀₂H₁₁₉N₆O₆Zn [M+H]⁺ 1587.8483, found 1587.8480.

Compound CM-b: The synthesis procedure is similar to that of **CM-a** using **8b** (290 mg, 0.2 mmol), 1 M TBAF in THF (1.5 mL), THF (20 mL); 4-iodobenzoic acid (372 mg, 1.5 mmol), Pd₂(dba)₃ (119 mg, 0.13 mmol), AsPh₃ (245 mg, 0.8 mmol), Et₃N (10 mL), and THF (40 mL) were used. The residue was purified by column chromatography (silica gel, CH₂Cl₂/MeOH = 50/1 to 40/1 (v:v)) to give **CM-b** as a deep green solid (170 mg, 60%). Mp: 194–196 °C. ¹H NMR (400 MHz, CDCl₃/d₅-pyridine = 99/1(v:v)): δ = 0.42–0.92 (m, 59H), 1.78–1.98 (m, 3H), 2.08–2.16 (m, 4H), 2.38 (s, 3H), 3.83 (s, 8H), 4.04 (t, *J* = 7.6 Hz, 1H), 4.98 (t, *J* = 7.6 Hz, 1H), 6.99 (d, *J* = 7.6 Hz, 4H), 7.19–7.24 (m, 3H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.65–7.74 (m, 3H), 7.85 (s, 1H), 8.03 (d, *J* = 7.2 Hz, 2H), 8.28 (d, *J* = 7.2 Hz, 2H), 8.70–8.74 (m, 2H), 8.82–8.86 (m, 4H), 9.61 (d, *J* = 8.0 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃/d₅-pyridine = 99/1(v:v)): δ = 14.05, 14.07, 20.9, 22.5, 24.8, 25.4, 28.8, 28.9, 31.1, 31.59, 31.62, 34.3, 35.4, 45.7, 68.7, 68.8, 69.3, 94.1, 96.1, 98.0, 105.3, 105.4, 105.6, 114.0, 119.6, 122.1,

122.8, 123.1, 123.3, 129.5, 129.6, 129.8, 129.9, 130.1, 130.3, 130.8, 131.0, 131.4, 131.9, 132.0, 132.9, 134.0, 134.3, 135.5, 135.7, 136.0, 141.1, 146.8, 147.8, 148.1, 148.4, 149.9, 150.1, 150.95, 150.99, 152.1, 160.2 ppm. IR (KBr): 2924, 2854, 2189, 1687, 1601, 1514, 1485, 1456, 1373, 1250, 1414, 1097, 999, 856, 796, 717 cm^{-1} . HRMS (ESI $^+$): calcd for $\text{C}_{91}\text{H}_{106}\text{N}_5\text{O}_6\text{Zn} [\text{M}+\text{H}]^+$ 1428.7435, found 1428.7433.

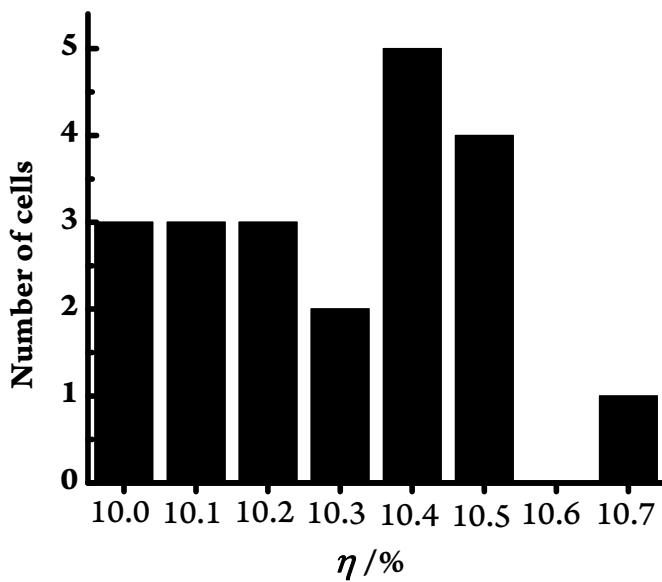

Compound CM-c: The synthesis procedure is similar to that of **CM-a** using **8c** (220 mg, 0.15 mmol), 1M TBAF in THF (1 mL), THF (20 mL); 4-iodobenzoic acid (186 mg, 0.75 mmol), $\text{Pd}_2(\text{dba})_3$ (61.8 mg, 0.067 mmol), AsPh_3 (138 mg, 0.45 mmol), Et_3N (6 mL), and THF (30 mL) were used. The residue was purified by column chromatography (silica gel) using $\text{CH}_2\text{Cl}_2/\text{MeOH} = 50/1$ (v:v) as eluent to give **CM-c** as a deep green solid (140 mg, 67%). Mp: 212–214 °C. ^1H NMR (400 MHz, $\text{CDCl}_3/d_5\text{-pyridine} = 99/1$ (v:v)): δ = 0.43–0.92 (m, 64H), 1.41–1.48 (m, 6H), 1.76 (s, 4H), 1.97–2.01 (m, 3H), 3.30–3.36 (m, 2H), 3.82–3.93 (m, 9H), 4.38–4.40 (m, 1H), 6.54 (d, $J = 8.0$ Hz, 1H), 6.99 (d, $J = 8.0$ Hz, 4H), 7.65–7.73 (m, 4H), 8.02 (d, $J = 7.6$ Hz, 2H), 8.27–8.29 (m, 2H), 8.70 (s, 2H), 8.81–8.90 (m, 4H), 9.60 (d, $J = 4.0$ Hz, 2H) ppm. ^{13}C NMR (100 MHz, $\text{CDCl}_3/d_5\text{-pyridine} = 99/1$ (v:v)): δ = 14.1, 14.3, 22.5, 22.9, 24.9, 25.4, 27.3, 27.8, 28.8, 31.0, 31.59, 31.62, 32.0, 33.8, 35.4, 46.0, 47.4, 68.7, 68.8, 69.6, 94.0, 95.8, 98.2, 103.0, 105.3, 113.9, 122.2, 122.5, 122.7, 123.0, 124.0, 129.4, 129.7, 129.9, 130.07, 130.10, 130.2, 131.0, 131.1, 131.6, 131.76, 131.83, 132.1, 134.9, 135.7, 146.5, 146.8, 147.0, 150.0, 150.1, 150.2, 150.91, 150.94, 151.3, 152.1, 160.2 ppm. IR (KBr): 2926, 2854, 2189, 1689, 1603, 1495, 1456, 1413, 1379, 1248, 1097, 999, 856, 795, 717 cm^{-1} . HRMS (ESI $^+$): calcd for $\text{C}_{90}\text{H}_{112}\text{N}_5\text{O}_6\text{Zn} [\text{M}+\text{H}]^+$ 1422.7904, found 1422.7911.

IV. UV-vis-NIR absorption and fluorescence spectra

Fig. S1 Electronic spectra of **CM-a** and **CM-c**. UV-vis-NIR (black line and axes), and normalized emission (red line, bottom x-axis) measured in THF solution ($c = 4.0 \times 10^{-6}$ M) as well as excited energy calculated by TDDFT/B3LYP/6-31(d,p) (green line and axes). Due to a systematic underestimation of the TDDFT/B3LYP calculation, a 25 nm bias of wavelengths (x-axes) exists between the calculated data (top x-axis) and the measured data (bottom x-axis).

V. Electrochemical data

Fig. S2 Cyclic voltammograms of **CM-a-c**


Table S3. Absorption, emission and electrochemical data of **CM-a-c** and **YD2-o-C8**.

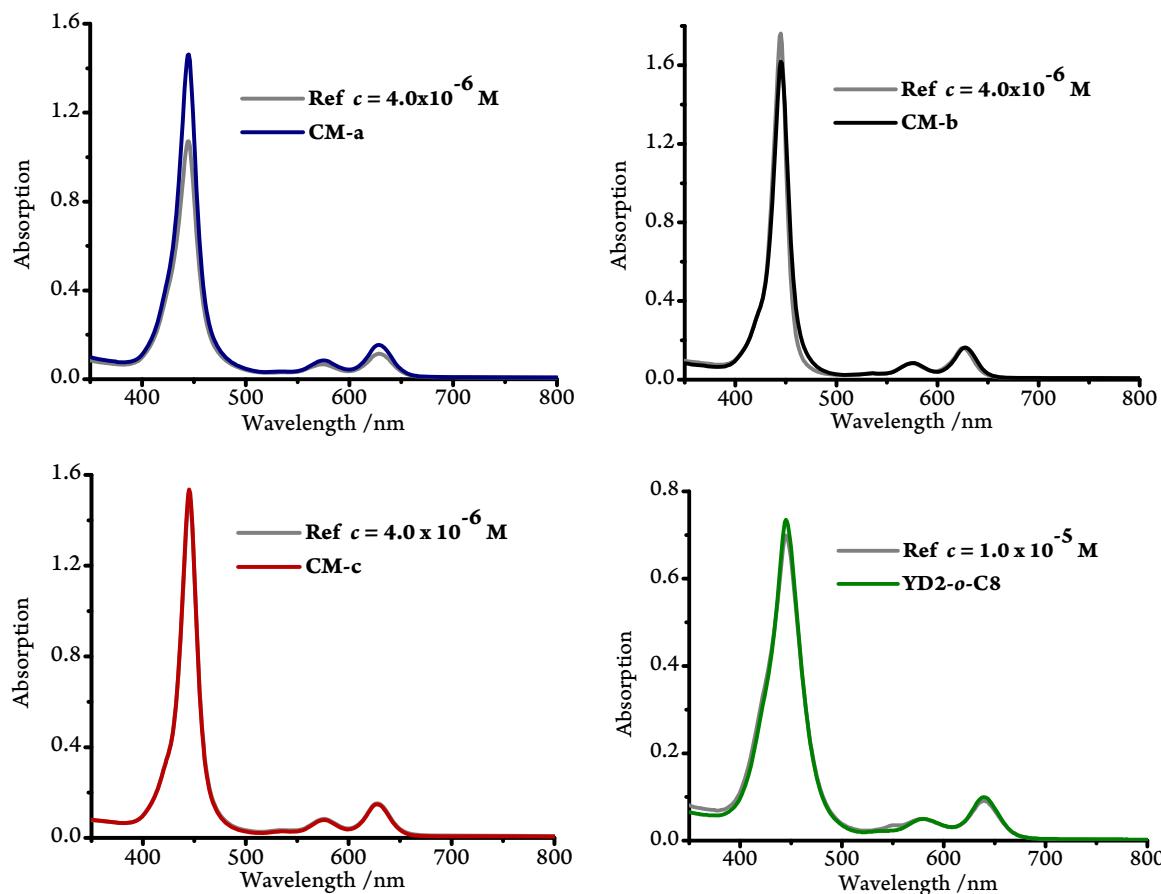
Dye	$\lambda_{\text{em}}/\text{nm}^a$	$E_{1/2}^{\text{ox}}/\text{V vs. NHE}^b$	E_{0-0}/eV^c	$E_{1/2}^{\text{ox*}}/\text{V vs. NHE}^d$
CM-a	648	0.74, 0.98	1.93	-1.19
CM-b	645	0.80, 0.99	1.94	-1.14
CM-c	650	0.75, 0.98	1.93	-1.18
YD2-o-C8^{S2}	663	0.82, - ^e	1.89	-1.07

^a Emission maxima measured in THF solution (4.0×10^{-6} M); ^b Measured by cyclic voltammetry; ^c Optical band gap estimated from the equation of $E_{0-0} = 1240/\lambda_{\text{inter}}$, where λ_{inter} is the intersection wavelengths between normalized Q_x absorption and emission band; ^d $E_{1/2}^{\text{ox*}} = E_{1/2}^{\text{ox}} - E_{0-0}$; ^e irreversible.

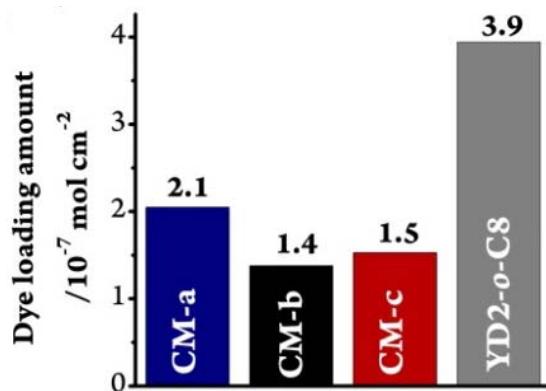
VI. DSSC fabrication and photovoltaic performance

Cell fabrication: Porphyrin dye was dissolved in a mixed solvent of CHCl_3 and EtOH (4/6, $v:v$) to give the colorizing solution (0.10 mM). After 10-minute ultrasound, TiO_2 anode was immersed into this solution at 35 °C overnight. The dye-loaded TiO_2 anode was then rinsed with $\text{CH}_2\text{Cl}_2/\text{EtOH}$ (1/1, $v:v$) and dried in air. Then dye-loaded TiO_2 anode and Pt-counter electrode were assembled into a sandwich type cell and sealed by a hot-melt parafilm with a small gap. A drop of electrolyte solution was injected into cell via syringe.

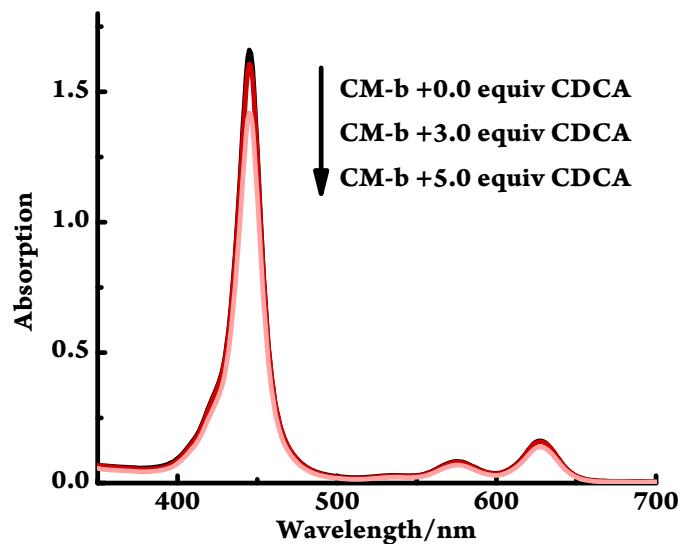
Fig. S3 Histogram of overall efficiency η for devices parallelly made with **CM-b** as sensitizer and LCM2 as electrolyte. Measured under standard photovoltaic conditions (global AM1.5 sunlight with irradiance of 100 mW cm^{-2} at 298 K).

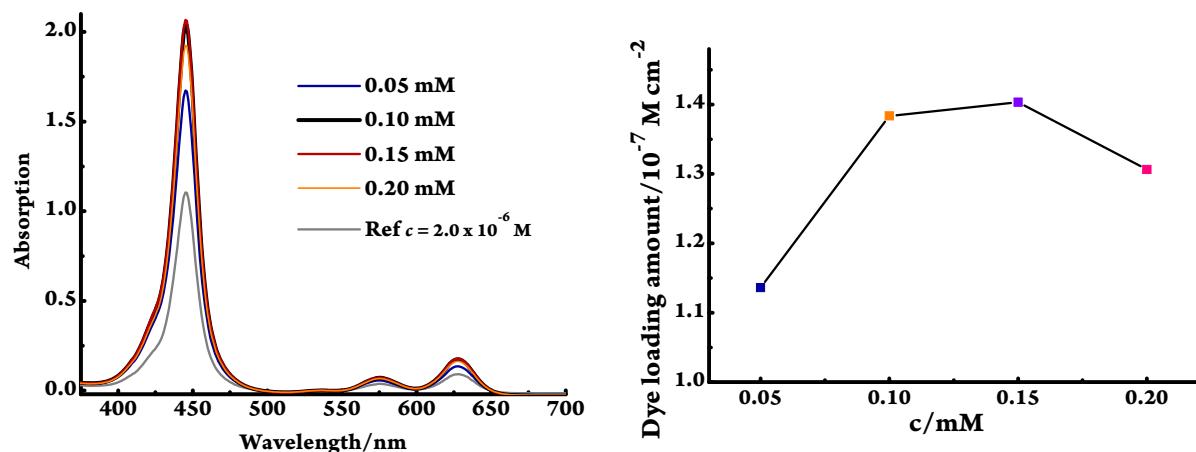

Table S4. Photovoltaic parameters of **CM** and **YD2-o-C8** cells under the optimized condition.

Sensitizer	$J_{sc}/\text{mA cm}^{-2}$	V_{oc}/mV	$FF/\%$	$\eta/\%$
CM-a	19.02	693	61.4	8.2
	19.32	703	61.6	8.4
	19.56	668	65.1	8.5
	19.34	705	61.2	8.3
	19.19	691	60.6	8.1
	19.12	693	61.6	8.2
Average	19.26 ± 0.17	692 ± 12	61.9 ± 1.5	8.3 ± 0.1
CM-b	22.58	734	64.5	10.7
	21.00	733	65.7	10.1
	21.78	738	65.0	10.5
	21.85	733	65.1	10.4
	22.30	725	63.4	10.3
	21.88	726	65.8	10.5
Average	21.90 ± 0.49	732 ± 5	64.9 ± 0.8	10.4 ± 0.2


	20.88	726	64.1	9.7
	20.84	723	63.4	9.6
	20.76	720	62.4	9.3
CM-c	20.49	723	62.3	9.2
	20.73	729	61.0	9.1
	21.00	720	63.8	9.6
Average	20.78±0.16	724±3	62.8±1.1	8.4±0.1
18.76	701	64.0	8.4	
18.61	703	63.8	8.3	
YD2-o-C8	18.66	707	64.4	8.5
	18.46	706	63.2	8.2
	18.81	701	64.6	8.5
	18.57	709	62.8	8.3
Average	18.65±0.12	705±3	63.8±0.6	8.4±0.1

LHE spectra: 7 μm -thick TiO_2 film (area: $1.0 \times 1.0 \text{ cm}^2$) was immersed into a 0.10 mM solution of the porphyrin dye in a mixture of $\text{CHCl}_3/\text{EtOH}$ (4/6, v/v) at 35 °C for 24 h. Then the film was washed with $\text{CH}_2\text{Cl}_2/\text{EtOH}$ (1/1, v/v), dried in air, and the transmittance (T%) spectrum was collected by HITACHI U-2910 absorption spectrophotometer. $LHE = 100\% - T\%$.


Dye loading amount testing: Dye was loaded on 13 μm -thick nanocrystalline TiO_2 film anode ($0.40 \text{ cm} \times 0.40 \text{ cm}$) by immersing TiO_2 anode in $\text{CHCl}_3/\text{EtOH}$ (4/6, v:v) solution of dye (0.10 mM if not otherwise noted) following the same procedure as fabricating cell. Dye adsorbed on TiO_2 film was then detached by NaOH (0.10 M) solution in $\text{THF}/\text{H}_2\text{O}$ (1:1, v/v, 6 mL). Dye loading amount was obtained by comparing absorbance of desorbed solution and reference solution at the same wavelength according to the Beers' law. The reference solution of alkalized dye (with specific concentration noted in **Fig. S4**) was prepared by dissolving dye in NaOH (0.10 M) in $\text{THF}/\text{H}_2\text{O}$ (1:1, v/v).


Fig. S4 The absorption spectra of alkalized **CM** and **YD2-*o*-C8** dyes in THF/H₂O (1:1, v/v, 6 mL) detached from TiO₂ anode by comparing with the corresponding reference (grey lines).

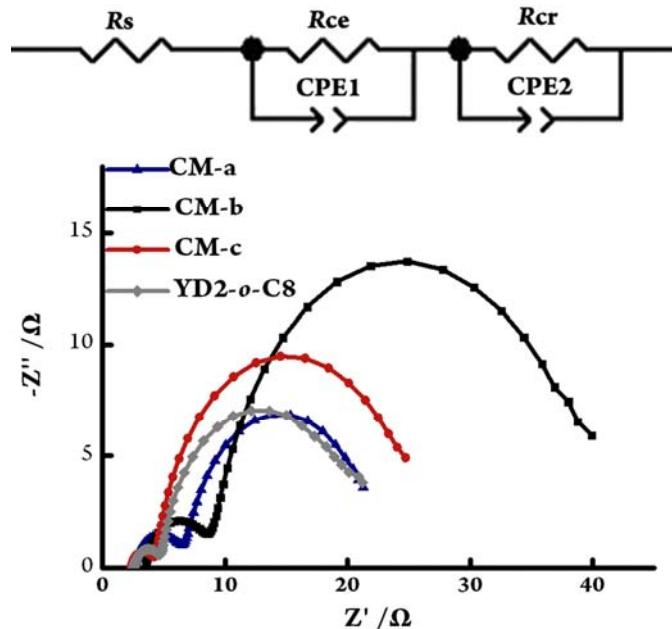

Fig. S5 Dye loading amount (Γ) of dyes.

Fig. S6 The absorption spectra of alkalized dyes in THF/H₂O (1:1, v/v, 6 mL) detached from TiO₂ anode. Various equivalents of CDCA were presented in **CM-b** solution ($c = 0.1$ mM) during colorizing TiO₂ anode.

Fig. S7 Left: The absorption of THF/H₂O (1:1, v/v, 6.0 mL) solution of alkalized **CM-b** detached from TiO₂ film, which was colorized by **CM-b** solutions with different concentrations as marked. For reference solution (grey line): $c = 2.0 \times 10^{-6}$ M, $\epsilon_{\text{max}} = 552000 \text{ M}^{-1} \text{ cm}^{-1}$. Right: Dye loading amount *vs* concentration (c) of colorizing solution.

Fig. S8 Nyquist plot of EIS spectra measured at a forward bias of -0.70 V for the DSSCs under dark condition. Inserted is an equivalent electrical circuit with a constant phase element (CPE) as component modeling the behaviour of a double layer.

R_s : Series resistance from reference electrode to working electrode.

R_{ce} : The resistance of charge transfer at counter electrode/electrolyte interface.

R_{cr} : The resistance of electron recombination at TiO_2 /dye/electrolyte interface.

Table S5. EIS data of CPE2. ^a S7

	α	$Q/10^{-4} \Omega^{-1} \text{cm}^{-2} \text{s}^\alpha$	$C_\mu/\mu\text{F cm}^{-2}$	$R_{cr}/\Omega \text{cm}^2$	τ/ms
CM-a	0.897	9.073	312	101	31.5
CM-b	0.895	9.439	346	204	70.6
CM-c	0.904	9.544	370	140	51.8
YD2-o-C8	0.878	11.65	335	109	36.5

^a Constant Phase Element (CPE) has two parameters: magnitude (Q) and exponent (α).

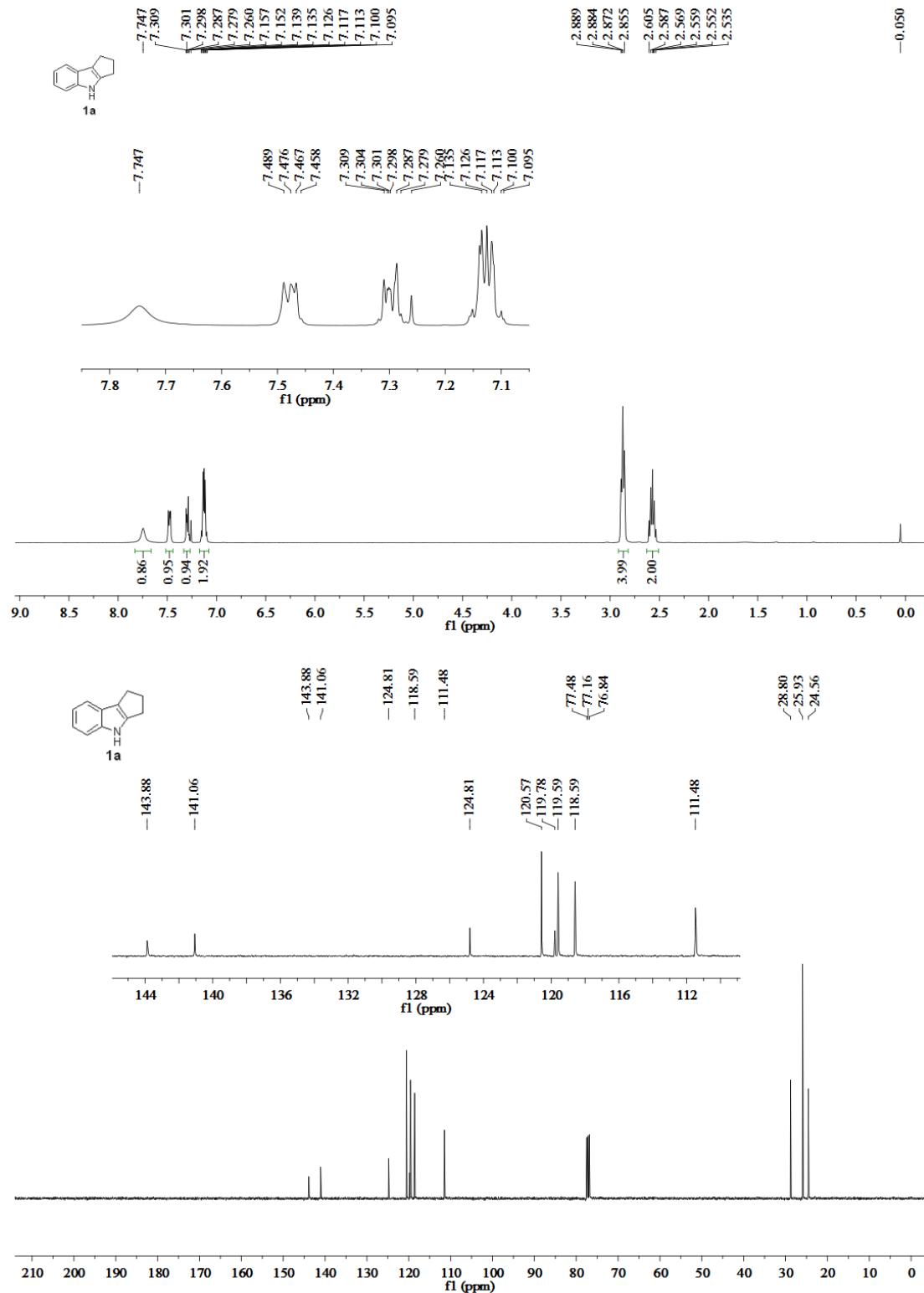
$$C_\mu = Q^{1/\alpha} \cdot R_{cr}^{1-\alpha/\alpha}; \tau = C_\mu \cdot R_{cr}$$

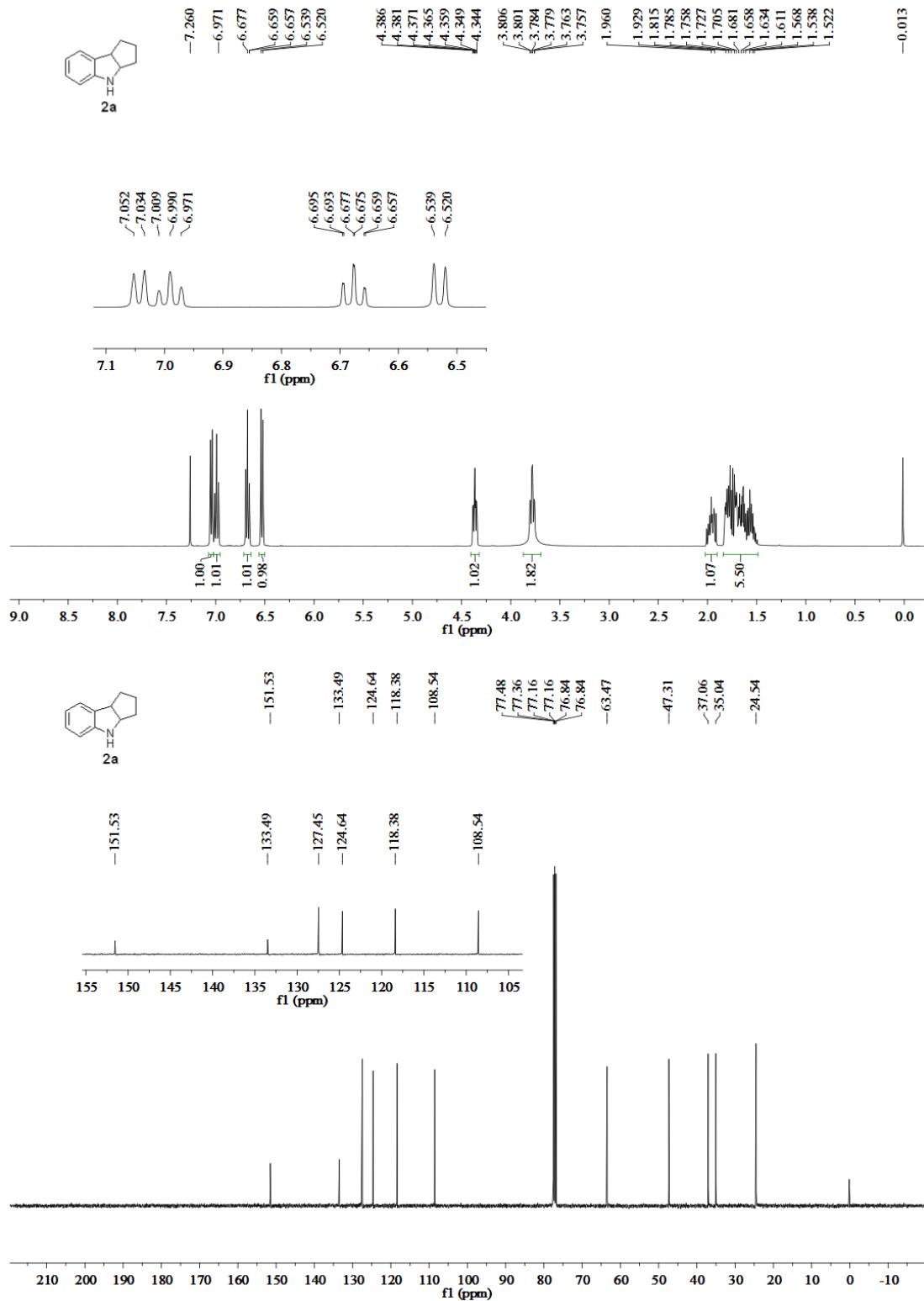
VII. References

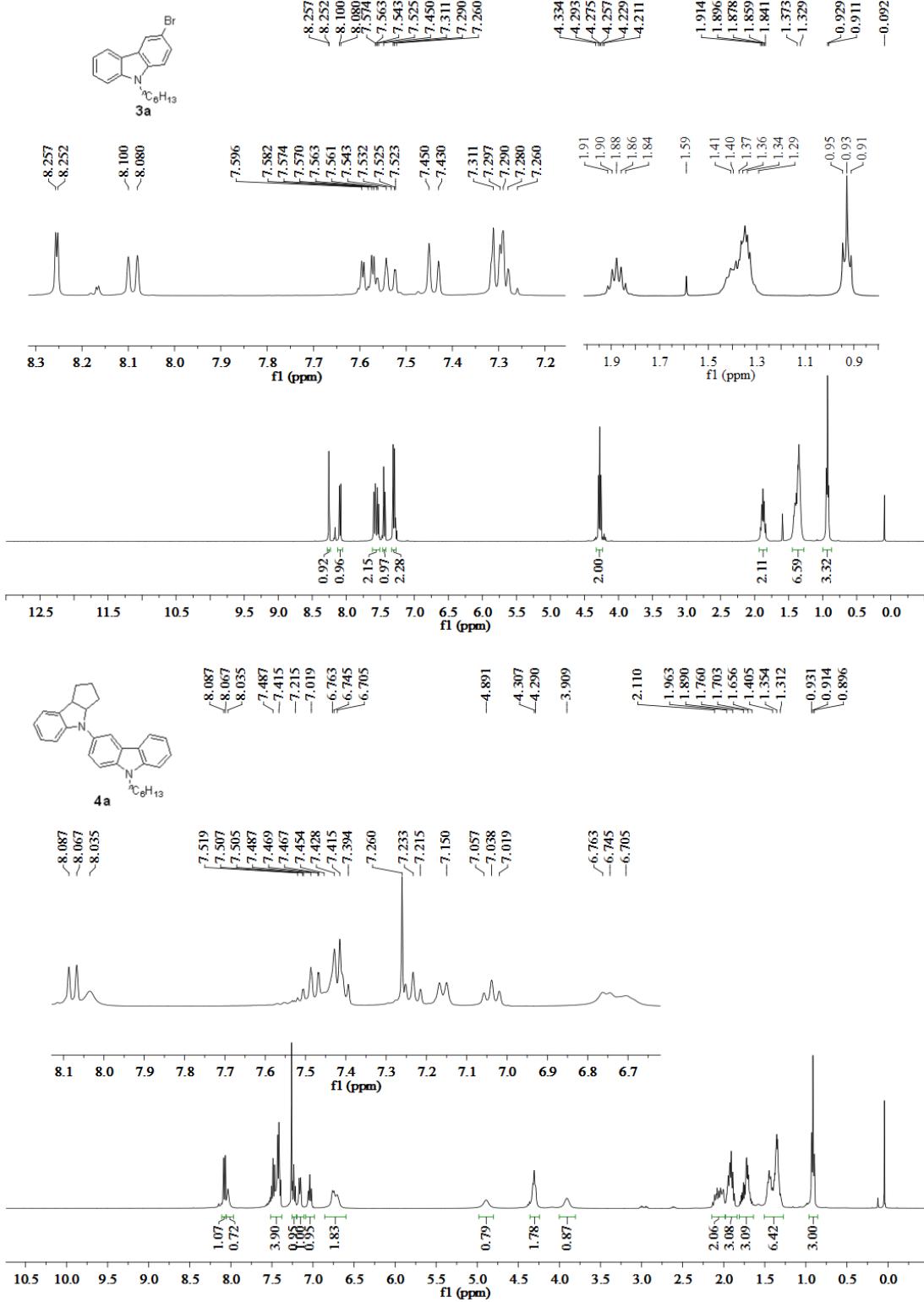
S1. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Jr. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle and J. A. Pople, Gaussian 03, Revision D.01, Gaussian, Inc., Pittsburgh PA, **2005**.

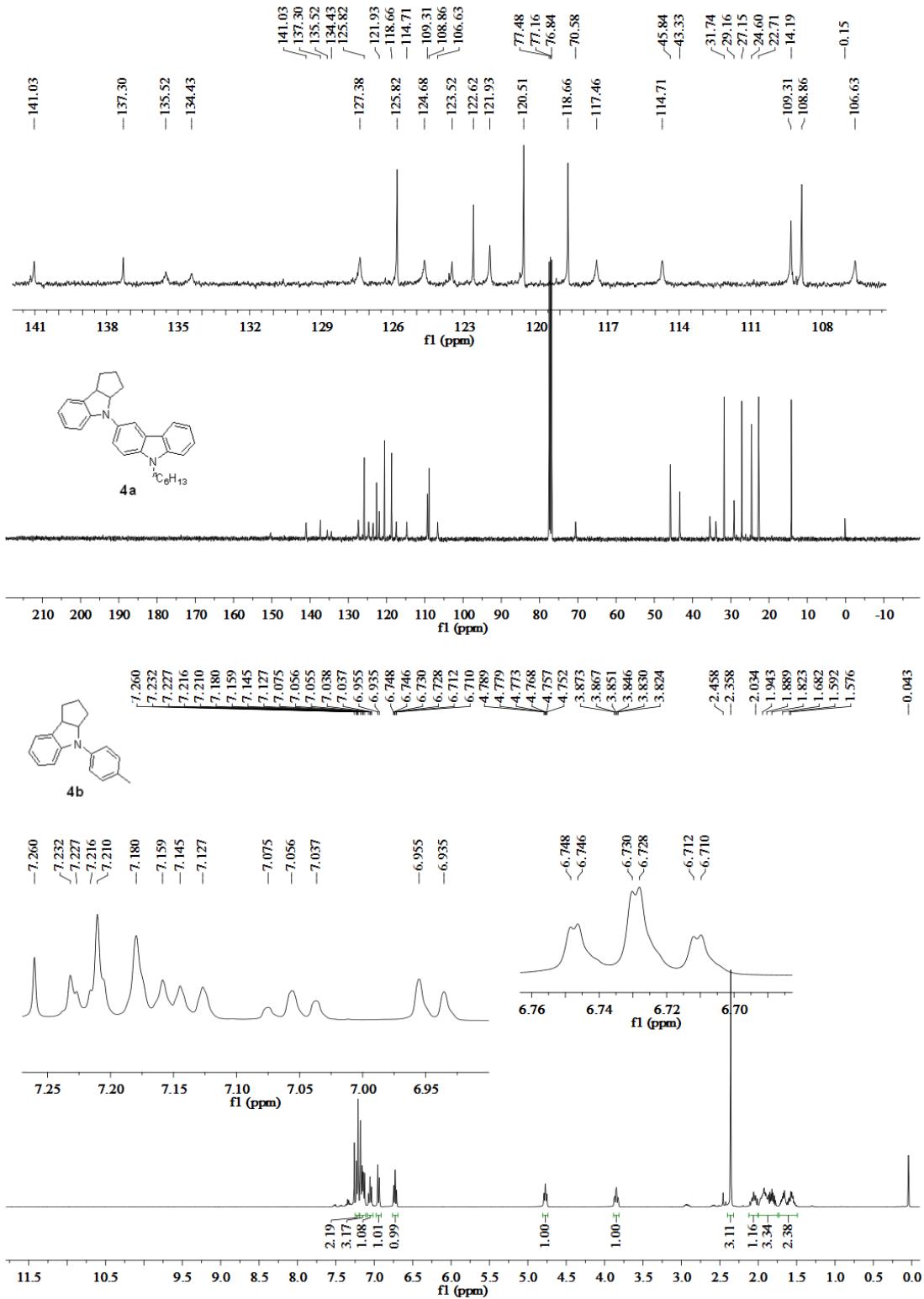
S2. A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin and M. Grätzel, *Science*, 2011, **334**, 629.

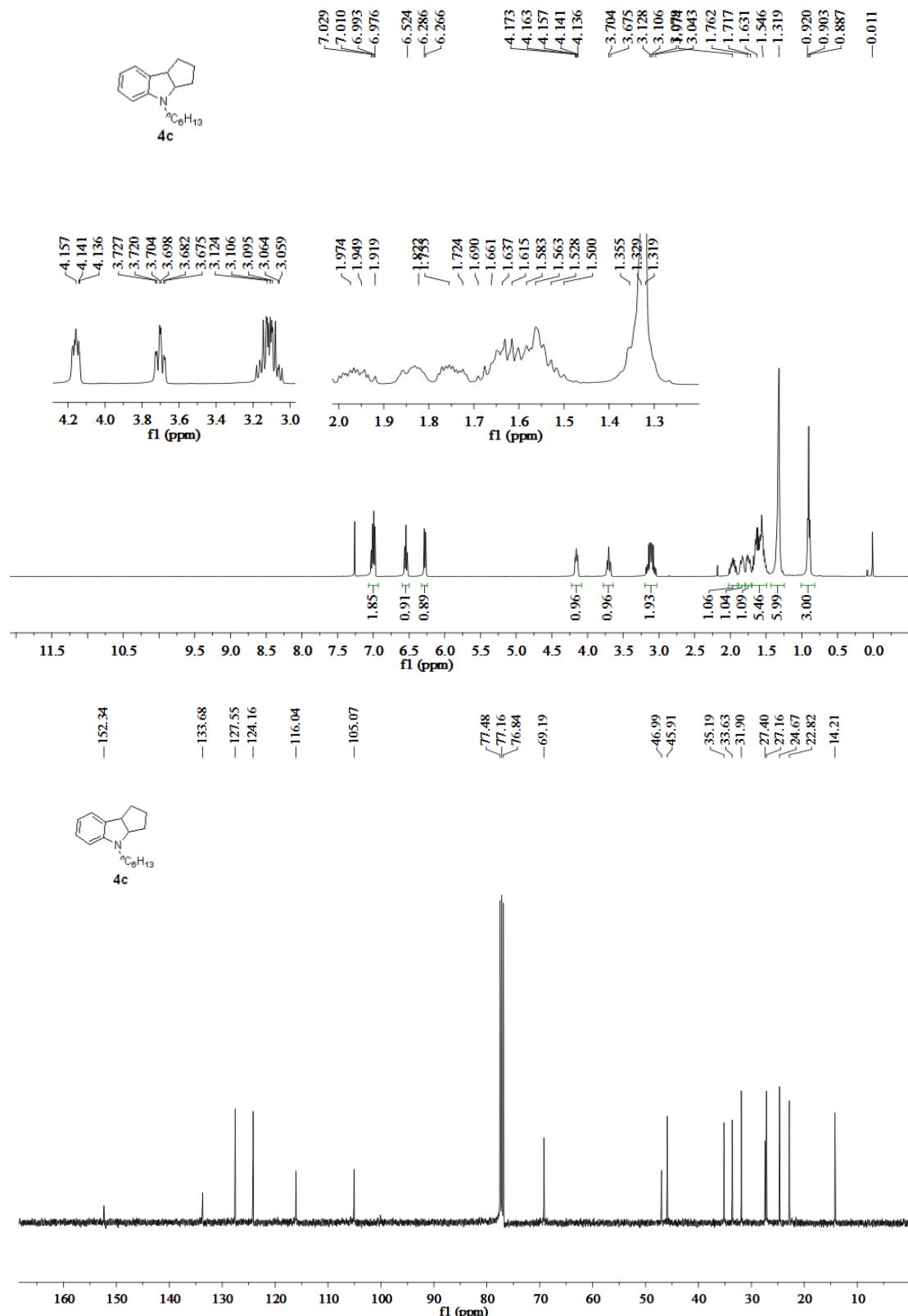
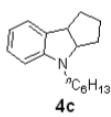
S3. G. S. Welmaker and J. E. Sabalski, *Tetrahedron Lett.*, 2004, **45**, 4851.


S4. H. Wang, G. Chen, Y. Liu, L. Hu, X. Xu and S. Ji, *Dyes Pigm.*, 2009, **83**, 269.


S5. M. Akhtaruzzaman, Y. Seya, N. Asao, A. Islam, E. Kwon, A. El-Shafei, L. Han and Y. Yamamoto, *J. Mater. Chem.*, 2012, **22**, 10771.


S6. K. Torizuka, Bis(tricyclic amine)-substituted arylene as hole transporting materials for organic electroluminescent devices. *JP Patent*, 2010229053, Oct 14, 2010


S7. B. Hirschorn, M. E. Orazem, B. Tribollet, V. Vivier, I. Frateur and M. Musiani, *Electrochim Acta*, 2010, **55**, 6218.



VIII. Copies of ^1H and ^{13}C NMR spectra

