Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information (ESI)

Tuning layer-structured $La_{0.6}Sr_{1.4}MnO_{4+\delta}$ into a promising electrode for intermediate-temperature symmetrical solid oxide fuel cells through surface modification

Jian Shen^a, Guangming Yang^a, Zhenbao Zhang^a, Wei Zhou^a, Wei Wang^b, Zongping Shao^{a,b,c*}

^a Jiangsu National synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry & Chemical Engineering, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, China

^b Department of Chemical Engineering, Curtin University, Perth, WA 6845, Australia

^c College of Energy, Nanjing Tech University, Nanjing 210009, China

LSMO ₄ -pristine	LSMO ₄ -H ₂ -Ar treatment	LSMO ₄ re-oxidized
I4/mmm	I4/mmm	I4/mmm
3.861(1)	3.85(4)	3.862(5)
3.861(1)	3.85(4)	3.862(5)
12.43(2)	12.53(3)	12.43(8)
6.64	7.84	5.62
8.81	11.12	7.52
5.482	8.796	3.985
	LSMO ₄ -pristine I4/mmm 3.861(1) 3.861(1) 12.43(2) 6.64 8.81 5.482	LSMO ₄ -pristine LSMO ₄ -H ₂ -Ar treatment I4/mmm I4/mmm 3.861(1) 3.85(4) 3.861(1) 3.85(4) 12.43(2) 12.53(3) 6.64 7.84 8.81 11.12 5.482 8.796

Table S1 The lattice parameters of LSMO₄-pristine, LSMO₄-H₂-Ar treatment and LSMO₄ re-oxidized.

Table S2 The porosity of each sample measured by Archimedes method.

Sample	LSMO ₄	LSMO ₄ -NiO	LSMO ₄ -SDC	LSMO ₄ -SDC-NiO
Porosity	50.34%	46.86%	33.90%	27.23%

Table S3 ASRs of the various electrodes at different temperatures.

Temperature (°C)	ASR (Ω cm ²)			
	LSMO ₄ -pristine	LSMO ₄ -NiO	LSMO ₄ -SDC	LSMO ₄ -SDC-NiO
800	0.46	0.16	0.021	0.020
750	1.31	0.39	0.069	0.052
700	3.90	1.02	0.18	0.17
650	12.77	2.80	0.52	0.39
600	46.99	8.18	1.56	1.05

Table S4 PPDs of cells with symmetrical configurations at temperatures of 600-800 °C.

Temperature	PPDs (mW cm ⁻²)			
(°C)	LSMO ₄ -pristine	LSMO ₄ -NiO	LSMO ₄ -SDC	LSMO ₄ -SDC-NiO
800	67	340	294	614
750	34	242	174	477
700	18	168	103	339
650	10	105	53	215
600	5	61	25	124

Fig. S1 Refined diffraction patterns of powders of LSMO₄: fresh (a), after treatment in 10% H₂-Ar at

800 °C for 10 h (b) and after re-oxidation in air at 800 °C for 2 h (c).

Fig. S2 Experimental and fit Nyquist plots for symmetrical cells with the LSMO₄-based electrodes measured in an open circuit at 700°C. The equivalent circuit adopted for fitting the EIS data is

presented inside the Nyquist plots.