Electronic Supplementary Information

Mesoporous Mo₂C/N-doped carbon heteronanowires as high-rate and long-life anode

materials for Li-ion batteries

Lichun Yang,^a Xiang Li,^a Sina He,^b Gaohui Du,^c Xiang Yu,^b Jiangwen Liu,^a

Qingsheng Gao,^b* Renzong Hu,^a Min Zhu^a*

^a School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, P. R. China.

E-mail: memzhu@scut.edu.cn; Tel: +86-20-87112762

^b Department of Chemistry, Jinan University, Guangzhou, 510632, P. R. China.

E-mail: <u>tqsgao@jnu.edu.cn</u>; Tel: +86-20-85226506

^c Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China

Fig. S1 SEM images of Mo₂C MPs purchased from Alfa Aesar.

Fig. S2 (a) Illustration of the structure and (b) SEM image of the $Mo_3O_{10}(C_6H_8N)_2 \cdot 2H_2O$ NWs

Fig. S3 CV profiles of the Mo_2C MPs in the initial five successive cycles at a scan rate of 0.5 mV s⁻¹.

Fig. S4 (a) SEM image and (b) EDS of the $Mo_2C/N-C$ MHNWs after 100 discharge/charge cycles at a current density of 2 A g⁻¹. The nanowire structure of the $Mo_2C/N-C$ MHNWs is well maintained during the cycling, which enables the high capacity retention. The presence of Au is associated with the pre-treatment in SEM investigation, and that of F and Cu is owing to the LiPF₆ electrolyte and Cu collector.

Fig. S5 (a) TEM and (b) HR-TEM images, (c) EDS and (d) elemental mapping of the $Mo_2C/N-C$ MHNWs after 100 discharge/charge cycles at a current density of 2 A g⁻¹. The inset of (a) displays the SAED pattern obtained on the nanowire after cycles.

Fig. S6 Nyquist plots of the Mo_2C/N -C MHNWs tested in selected states of discharge and charge in the 20th cycle.

Fig. S7 Kinetics analysis of the electrochemical behavior towards Li^+ for the Mo₂C MPs. (a) CV profiles at various scan rates (0.3, 0.5, 0.7, 0.9, 1.2, 1.5 mV s⁻¹) after the initial 5 successive cycles (0.5 mV s⁻¹), (b) separation of the capacitive and diffusion currents at a scan rate of 0.5 mV s⁻¹, the capacitive contribution to the total current is shown by the shaded region and (c) contribution ratio of the capacitive and diffusion controlled charge *vs.* scan rate.

Table S1 Fitted parameters of the Nyquist plots recorded with the $Mo_2C/N-C$ MHNWs as the working electrode during the 80^{st} discharge/charge cycle at various voltages.

Cell voltage	R _e	R _{sf+ct}	Equivalent
(V)	(ohm)	(ohm)	circuit
d-3	8.6	24.0	II
d-1.8	8.5	23.9	II
d-1.3	9.3	5.0	II
d-0.3	9.4	5.0	II
d-0.05	9.2	4.8	II
c-0.5	9.3	4.8	II
c-1.4	9.6	5.2	II
c-3	8.8	26.7	II

Table S2 comparison of fitted R_e and R_{sf+ct} of the $Mo_2C/N\text{-}C$ MHNWs and the Mo_2C

MPs tested in the discharged state of 0.05 V in the 80^{th} cycle.

Sample	R _e	R _{sf+ct}	Equivalent
	(ohm)	(ohm)	circuit
Mo ₂ C/N-C MHNWs	9.2	4.8	II
Mo ₂ C MPs	7.0	10.6	II