Electronic Supplementary Information ## Novel FeNi $_2$ S $_4$ /TMDs-based Ternary Composites for Supercapacitor Applications Jianfeng Shen^a, Jin Ji^a, Pei Dong^b, Robert Baines^b, ZhuQing Zhang^a, Pulickel M. Ajayan^{b*}, Mingxin Ye^{a*} ^b Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX 77005, USA Figure S1. XPS survey spectrum of FeNi₂S₄-g-MoSe₂ (a). High-resolution XPS spectra of the Fe 2p (b), Ni 2p (c), Mo 3d (d) and Se 3d (e) of FeNi₂S₄-g-MoSe₂. ^a Institute of special materials and technology, Fudan University, 200433, Shanghai, China Figure S2. CV curves of $FeNi_2S_4$, $FeNi_2S_4$ -g, $FeNi_2S_4$ -g-MoS2 and $FeNi_2S_4$ -g-MoSe2 at different scanning rates. Figure S3. GCD curves of $FeNi_2S_4$, $FeNi_2S_4$ -g, $FeNi_2S_4$ -g-MoS₂, and $FeNi_2S_4$ -g-MoSe₂ at different current densities. Figure S4. SEM-EDX mapping of FeNi₂S₄-g. Figure S5. SEM-EDX mapping of $FeNi_2S_4$ -g after cycling test.