Supporting information:

Journal: Journal of Materials Chemistry A

Title:

New Generation Perovskite Solar Cells with Solution-Processed

Amino-substituted Perylene Diimide Derivative as Electron-

Transport Layer

Hua Zhang,^{a, ‡} Lingwei Xue, ^{b, ‡} Junbo Han,^c Yong Qing Fu, ^d Yan Shen, ^a Zhiguo Zhang, ^{b*} Yongfang Li, ^b Mingkui Wang ^{a*}

^a Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for
Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan,
430074, P. R. China

^b CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

^c Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China

^d Department of Physics and Electrical Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK

‡These authors contributed equally. E-mail: <u>mingkui.wang@mail.hust.edu.cn</u> E-mail: <u>zgzhangwhu@iccas.ac.cn</u>

Figure S1 XRD pattern of MAPbI_{3-x}Cl_x thin film on FTO and FTO/N-PDI. There is no distinct peaks at $2\theta = 12.56$ °, corresponding to the absence of typical diffractions of (001) planes for the unconverted PbI₂.

Figure S2. The contact angle of water on (a) FTO/C-PDI substrate, and (b) FTO/N-PDI substrate. Photograph of MAPbI_{3-x}Cl_x film on (c) FTO/C-PDI and (d) FTO/N-PDI substrates, respectively.

Figure S3. (a) Photograph of N-PDI in N, N-Dimethyl-formamide and methanol, showing the solubility of this material in different solvents. (b) Absorption (right ordinate) and transmittance (left ordinate) spectra of the FTO deposited with N-PDI interlayer by varying the thickness.

Figure S4. AFM image (size: $2 \times 2 \mu m$) of the FTO substrate, showing a roughness of 17.16 nm.

Figure S5. (a-c) Influence of scan rates on the current-voltage characteristics for the device based on FTO/N-PDI substrate (d) Current–voltage curves for the control device measured by forward and reverse scans at 20 mV per step with a delay time of 10 ms (e) Histogram of PCE for perovskite solar cells based on the FTO and FTO/N-PDI substrates.

Figure S6 Top-view SEM images of the MAPbI_{3-x}Cl_x films on (a) the FTO, and (b) the FTO/N-PDI substrates.

Figure S7 (a) Steady-state photocurrent output at the maximum power point (0.88 V) for the N-PDI based devices (b) J-V curves of the perovskite solar cells based on FTO/TiO_2 with different scan directions.

Figure S8 The equivalent circuit with 3 lumped RC-circuits in series for fitting the impedance spectroscopy data obtained from the perovskite solar cells in this study.

Figure S9 (a) Steady-state photocurrent output at the maximum power point (0.84 V) for the flexible perovskite solar cells based on N-PDI (b) Histogram of PCE for the flexible devices based on N-PDI.

Figure S10 Normalized cell efficiency plotted as a function of storage time for the PVSCs based on rigid and flexible substrates, the devices without encapsulation were stored under ambient conditions (relative humidity ca. 50%; temperature ca. 28 °C).