"Spontaneous bubble-template" assisted and metal-polymeric frameworks derived N/Co dual-doped hierarchically porous carbon/Fe₃O₄ nanohybrids: superior electrocatalyst for oxygen reduction reaction in biofuel cells

Chun Cao ab, Liling Wei a*, Min Su ab, Gang Wang ab, Jianquan Shen a**

^a Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China

^b University of Chinese Academy of Sciences, Beijing, 100049, P.R. China

* Corresponding Author: E-mail: weill@iccas.ac.cn

** Corresponding Author: E-mail: jqshen@iccas.ac.cn

Fig.S1 (a) Polyacrylonitrile (PAN), (b) Polyacrylamidoxime (PAO), (c) metal-polymeric frameworks (PAO-X, X=Fe or Co), (d) Fe₃O₄@N/Co-C, (e) air-cathode of MFCs and (f) the configuration and working principles of MFCs.

Fig.S2 The SEM images of carbon derived from PAN by carbonization

Fig.S3 The TEM images of Fe₃O₄@N-C (a) and Fe₃O₄@N/Co-C (b).

Fig. S4 The high-resolution TEM images of Fe $_3O_4@N/Co-C$

Fig. S5 The XRD patterns of (a) N-C, (b) N/Co-C, (c) Fe₃O₄@N-C and (d) Fe₃O₄@N/Co-C.

Matsuda's equation:

$$i_p = 0.4464 \times 10^{-3} n^{3/2} F^{3/2} A(RT)^{-1/2} D_R^{1/2} C_R^* v^{1/2}$$
 Eq. S1

where i_p is the peak current (A), n = 1 is the number of electrons transferred, F = 96487C mol⁻¹ e⁻ Faraday's constant, R = 8.314 J mol⁻¹ K the gas constant, T = 308 K is the temperature, $C_R^* = 0.005$ mol L⁻¹ the initial ferrocyanide concentration, v = 0.05 V s⁻¹ the scan rate. D_R is the diffusion coefficient of K₄Fe(CN)₆.

g. S6 Eletrochemical BET: (a) CV measured in ferrocyanide solution with different catalysts modified glass carbon eletrodes; (b) eletrochemical active area calculated by Matsuda's equation

Fig. S7 LSV of N-C, N/Co-C, Fe₃O₄@N-C and Pt/C at different rotation speed from 500 to 2500 rpm min⁻¹ in PBS solution.

Fig. S8 The Koutecky–Levich plots measured by rotating disc electrode (RDE) in O₂-saturated PBS solution: N-C (a), N/Co-C (b) and Fe₃O₄@N-C (c).

Samples	ICP results		For Co(wit/wit)	Active area	Carbon content
	Fe (wt %)	Co (wt %)	- Fe.Co(wi/wi)	$(m^2 g^{-1})$	<i>a</i> (wt %)
Fe ₃ O ₄ @N-C	8.66	0	non	673.44	84.44
Fe ₃ O ₄ @N/Co-C-1	8.14	0.41	19.85	702.38	81.80
Fe ₃ O ₄ @N/Co-C-2	7.25	0.64	11.33	729.69	82.29
Fe ₃ O ₄ @N/Co-C-3	5.97	0.95	6.28	594.38	82.51
Fe ₃ O ₄ @N/Co-C-4	5.03	1.27	3.96	503.12	82.78
Fe ₃ O ₄ @N/Co-C-5	4.32	1.59	2.72	466.62	83.26
N/Co-C	0	1.98	non	403.13	87.08
N-C	non	non	non	371.86	93.41
Pt/C	non	non	non	456.25	80

Table S1 The catalysts with different Fe/Co ratio (mass ratio) and their eletrochemical active area.

^aCarbon content was calculated by combining ICP and XPS results.

Fig. S9 Eletrochemical BET: CV measured in ferrocyanide solution with different catalysts modified glass carbon eletrodes.

Fig. S10 The effect of Fe/Co ratio on the electrochemical active area.

Fig. S11 LSV of Fe₃O₄@N/Co-C with different Fe/Co ratio at 1600 rpm min⁻¹ in O₂-Saturated PBS solution.

Fig. S12 The i-t curves (a) and the anti-toxic ability (b) of $Fe_3O_4@N/Co-C$ with different Fe/Co ratio in O_2 -Saturated PBS solution.

Fig. S13 The resistance composition of different catalysts (insert picture: characteristic equivalent electrocircuit).