Scandium-doped Zinc Cadmium Oxide as New Stable n-type Oxide

Thermoelectric Materials

L. Han,^a† D. V. Christensen,^a A. Bhowmik,^a S. B. Simonsen,^a L. T. Hung,^a E. Abdellahi,^a Y. Z. Chen,^a N. V. Nong,^a

S. Linderoth,^a and N. Pryds^a†

^a Department of Energy Conversion and Storage, Technical University of Denmark, DK-4000 Roskilde, Denmark.

† Corresponding author: ihan@dtu.dk, nipr@dtu.dk

Table of Contents:

- 1. Calculated results from Rietveld refinements of XRD spectrums
- 2. Parameters used for Callaway model.
- 3. Calculated phonon density of states for $Zn_{0.875}Cd_{0.125}O$ and ZnO by DFT calculation.
- TE properties of the conventional Zn_{0.98}Al_{0.02}O_{1.03} samples and new Zn_{0.9}Cd_{0.1}Sc_{0.02}O_{1.03} samples under the influence of annealing in air at 1073K for 72 hours.

1. Calculated results from Rietveld refinements of XRD spectrums

Sample	Main phase: Zincite						Secondary phase					R-Values			
	Space	Lattice		Cell	Wt% -	Spac	Lattice		Cell	Wt% -					
	group	parameters (Å)		Volum	Rietvel	e	parameters (Å)		Volum	Rietvel					
		a	b	c	e (Å ³)	d (%)	group	a	b	c	e (Å ³)	d (%)	R _{ex}	R _{wp}	GO
													р		F
ZnSc _{0.02} O _{1.03}	P63m	3.2	3.2	5.2	47.59	99.440	I213	9.8	9.8	9.8	954.5	0.560	2.9	10.	3.62
	c	5	5	0				4	4	4			5	6	
Zn _{0.95} Cd _{0.05} Sc _{0.02} O _{1.0}	P63m	3.2	3.2	5.2	48.38	99.276	I213	9.8	9.8	9.8	953.5	0.724	3.6	8.6	2.37
3	c	7	7	3				4	4	4			6	9	
Zn _{0.9} Cd _{0.1} Sc _{0.02} O _{1.03}	P63m	3.2	3.2	5.2	49.18	99.683	I213	9.8	9.8	9.8	956.5	0.317	3.5	7.4	2.09
	c	8	8	5				5	5	5			4	1	
$Zn_{0.875}Cd_{0.125}Sc_{0.02}O_1$	P63m	3.2	3.2	5.2	49.33	97.817	Fm3	4.6	4.6	4.6	103.33	2.183	3.8	8.9	2.36
.03	c	9	9	5			m	9	9	9			1	9	
$Zn_{0.85}Cd_{0.15}Sc_{0.02}O_{1.0}$	P63m	3.2	3.2	5.2	48.98	93.392	Fm3	4.6	4.6	4.6	103.18	6.608	3.6	8.8	2.44
3	c	8	8	4			m	9	9	9			1	0	

Table S1 Results from Rietveld refinement for $Zn_{1-x}Cd_xSc_{0.02}O_{1.03}$ (x = 0 to 0.15) samples.

Table S2 Results from Rietveld refinement for $Zn_{0.9}Cd_{0.1}Sc_yO_{1+1.5y}$ (y = 0 to 0.04) samples.

Sample	Main phase: Zincite						Secondary phase					R-Va	lues		
	Space	Lattice parameters		Cell	Wt% -	Space	Lattice parameters		Cell	Wt% -					
	group	(Å)		Volume	Rietveld	group	(Å)		Volume	Rietveld					
		a	b	c	(Å ³)	(%)		a	b	c	(Å ³)	(%)	R _{exp}	R _{wp}	GOF
Zn _{0.9} Cd _{0.1} O	P63mc	3.28	3.28	5.25	49.06	100	-	-	-	-	-	-	2.89	9.69	3.35
Zn _{0.9} Cd _{0.1} Sc _{0.01} O _{1.015}	P63mc	3.29	3.29	5.25	49.14	100	-	-	-	-	-	-	3.53	7.70	2.18
$Zn_{0.9}Cd_{0.1}Sc_{0.02}O_{1.03}$	P63mc	3.29	3.29	5.25	49.18	99.683	I213	9.85	9.85	9.85	956.5	0.317	3.54	7.41	2.09
Zn _{0.9} Cd _{0.1} Sc _{0.03} O _{1.045}	P63mc	3.29	3.29	5.25	49.18	99.059	I213	9.85	9.85	9.85	955.2	0.941	3.57	8.08	2.27
$Zn_{0.9}Cd_{0.1}Sc_{0.04}O_{1.06}$	P63mc	3.29	3.29	5.25	49.10	98.618	I213	9.85	9.85	9.85	954.5	1.382	3.57	8.08	2.27

2. Parameters used for Callaway model

Table S3 An overview of the parameters used in Callaway calculations.

Sample	ZnSc _{0.02} O _{1.03}	$Zn_{0.95}Cd_{0.05}Sc_{0.02}O_{1.03}$	Zn _{0.9} Cd _{0.1} Sc _{0.02} O _{1.03}	$Zn_{0.875}Cd_{0.125}Sc_{0.02}O_{1.03}$	$Zn_{0.85}Cd_{0.15}Sc_{0.02}O_{1.03}$
θ/Κ	400	400	400	400	400
<i>v</i> /ms ⁻¹	3097	3097	3097	3097	3097
α/K-4s-1	230	1600	3200	3900	2900
$\beta/K^{-5}s^{-1}$	0.015	0.015	0.015	0.015	0.015
L/m	1× 10 ⁻⁵	3× 10 ⁻⁶	4.5× 10 ⁻⁶	4× 10 ⁻⁶	3× 10 ⁻⁶

Sampl	Zn _{0.9} Cd _{0.1} Sc _{0.006} O _{1.00}		Zn _{0.9} Cd _{0.1} Sc _{0.02} O _{1.0}		
e	9	Zn _{0.9} Cd _{0.1} Sc _{0.01} O _{1.015}	3	$Zn_{0.9}Cd_{0.1}Sc_{0.03}O_{1.045}$	$Zn_{0.9}Cd_{0.1}Sc_{0.04}O_{1.06}$
θ/Κ	400	400	400	400	400
<i>v</i> /ms ⁻¹	3097	3097	3097	3097	3097
α/K-4s-1	3050	3100	3200	3300	3400
β/K-5s-1	0.015	0.015	0.015	0.015	0.015
L/m	5× 10 ⁻⁶	5× 10 ⁻⁶	4.5× 10 ⁻⁶	4× 10 ⁻⁶	3.5× 10 ⁻⁶

3. Calculated phonon density of states for Zn_{0.875}Cd_{0.125}O and ZnO by DFT calculation

Fig. S1 Calculated phonon density of states for $Zn_{0.875}Cd_{0.125}O$ and ZnO by DFT calculation

4. Supplement TE properties

Fig. S2 TE properties of the conventional $Zn_{0.98}Al_{0.02}O_{1.03}$ samples and new $Zn_{0.9}Cd_{0.1}Sc_{0.02}O_{1.03}$ samples under the influence of annealing in air at 1073K for 72 hours.