Support Information

Ultrasoft Gelatin Aerogels for Oil Contaminant Removal

Juan Wang, Dan Zhao, Ke Shang, Yu-Tao Wang, Dan-Dan Ye, A-Hui Kang, Wang Liao,* and Yu-Zhong Wang*

Center for Degradable and Flame-Retardant Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China. *E-mail: yzwang@scu.edu.cn (Y.-Z. Wang); liaowang@scu.edu.cn (W. Liao).

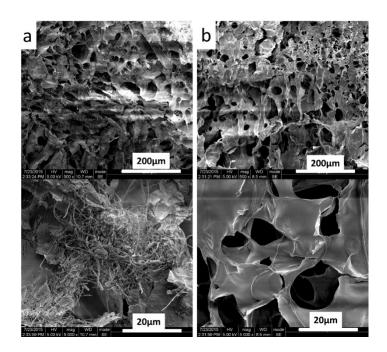


Fig. S1 SEM photographs of the MTCS-cGels: (a) surface (up) and its zoom-in (down); (b) cryo-fractured surface (up) and its zoom-in (down).

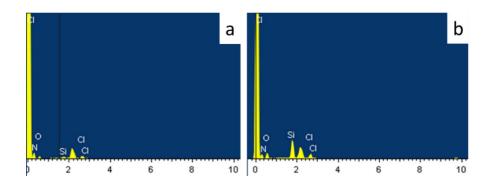


Fig. S2 EDX spectra of the MTCS-cGel aerogel: cryo-fractured surfaces (a) and outer surface (b).

Table S1. The comparison of oil absorbent materials demonstrated in recent years.

Absorbent	Production	Absorption	Reusability	Renewability	Biodegradability	Ref
Material	Process	Capacity (g/g)	and Method			
PS/PU Fibers	 Dissolving PS and diluting PU resin Electrospinning 	Motor oil~64	Squeezing: Motor oil~60% after 5 cycles	N	N	20
TiO ₂ -coated PU Sponge	 1.Initial PU sponge soaking in TiO₂ sol 2.Centrifugation and drying 	Motor oil~105 Gasoline~103 Diesel~87.4 Crude oil~114.9	Squeezing: Motor oil ~75% after 12 cycles	N	N	17
Hydrophobic PU Sponge	1.PU sponges were ultrasonically cleaned in acetone and ethanol2.Immersing PU sponge in MTCS/hexane solution and drying	Crude oil~24 Gasoline~16	None	N	N	18
Silanized Melamine Sponges	 Silanization of commercial melamine sponge by immersing in a octadecyltrichlorosilane/toluene solution Fresh toluene washing by sorption-squeezing process and drying 	Chloroform~163 Toluene~96.2 Diesel~93.6	Squeezing: Diesel~93.4 % after 100 cycles	N	N	42
Superhydropho bic MF Sponge	1.Depositing of a thin layer of polydopamine (PDA) films on MF sponge2.Immersion of the PDA-coated MF sponge into an(1H,1H,2H,2H- perfluorodecanethiol)/ethanolic solution	Chloroform~195 n-hexane~79 Cyclohexane~94 Pump oil~90	Squeezing: Cyclohexane ~91% after 100 cycles	N	N	23
Bacterial Cellulose Aerogels	1.Bacterial Cellulose2.Freeze-drying3.Hydrophobic modification in	Gasoline~95 Paraffin oil~95 Chloroform~180	Compression -rinsing- freeze drying Diesel~100%	Y	Y	33

	MTCS/CH2Cl2		after 10 cycles			
Nanofibrillated Cellulose Aerogel	 Homogenized with an inline Ultra-Turrax system Fibrillation Centrifugation Silylated NFC by mixing NFC and polysiloxane sol (MTMS) Freeze-drying 	Dodecane~55 Chloroform~100 Silicon oil~70 Motor oil~50	Rinsing- freeze drying Dodecane~9 0% after 10 cycles	Ŷ	Y	34
Nanocellulose Aerogels	 Hardwood kraft pulp mechanically homogenized to form Nanocellulose hydrogel Freeze-drying Coated with TiO₂ using atomic layer deposition 	Chloroform~40 Paraffin oil~27 Octane~22	Drying: Toluen~100 % after 10 cycles	Y	Y	32
Nanofibrillated Cellulose Aerogel	 1.Chemical treatments 2.High-intensity ultrasonication 3.Freeze-drying 4. Hydrophobic coating by MTCS (CVD) 	Oil~52	None	Y	Y	36
Cellulose Nanofibril Aerogels	 Cellulose isolated from rice straw TEMPO oxidation Defibrillation Freeze-drying Hydrophobic coating by triethoxyl(octyl) silane (CVD) 	Chloroform~356 Decane~219 Pump oil~230	Distillation: Toluen~48%, Octane~61% , Cyclohexane ~57%, after 6 cycles	Ŷ	Y	35
Microfibrillated Cellulose Fibers Aerogel	 Separation into individual cellulose fibers by deflaker Microfibrillation of cellulose fibers Freeze-drying Hydrophobic coating by MTMS 	pump oil~197, motor oil~198 silicone oil~228	Squeezing" Pump oil 61% after 30 cycles	Y	Y	37

	(CVD)					
PVA/CNF	1. TEMPO-oxidation	Gasoline~45	None	Y	Y	31
Aerogel	 Refining in a disk refiner and centrifugation Microfluidization Preparation of crosslinked PVA/CNF aerogels Freeze-drying Hydrophobic coating by MTCS 	Crude oil~64 Chloroform~95				
	(CVD)					
Chitin Aerogel	 Dissolving chitin in NaOH/urea aqueous by using freezing/thawing cycles Cross-linking by epichlorohydrin Freeze-drying Hydrophobic coating by MTCS (CVD) 	Gasoline~30 Chloroform~58 Pump oil~37	Rinsing- vacuum drying Toluene~93 % after 10 cycles	Y	Y	38
Carbon	1. Synthesis of carbon soot (CS)	Toluene~50	Rinsing-	N	N	24
Soot Sponge	combustion flame process 2. Preparation of CS-sponge by dip-coating of melamine sponge in the CS dispersion	Crude oil~30 Used pump oil~34 Pump oil~36	drying: Pump oil~94% after 10 cycles, ~87% after 20 cycles; Squeezing: Pump oil~37% after 2 cycles, ~28% after 4 cycles.			
Nitrogen-Rich	1. Preparation of Lignin Particles	Chloroform~12.5	Distillation:	N	N	6
Carbon Aerogels	 2. MF Prepolymer Monomers (pre- MF) 3. Porous PMF aerogels 	Gasoline~7 Pump oil~7.5	n- hexane~100 % after 100 cycles;			

	4. NRC Aerogels by complete		Combustion:			
	pyrolysis					
			n-			
			hexadecane			
			~65% after			
			100 cycles.			
BC/rGO	1. biosynthesis bacterial cellulose	DMF~136	None	N	N	30
Aerogels	(BC)	Cyclohexane~150				
	2. Fibrillation of BC and					
	ultrosonication					
	3. Synthesis of GO					
	4.mixing BC suspension with GO					
	suspension and ultrosonication,					
	freeze-drying					
	4. reducing at 200 °C under a H2					
	stream					
Carbon	1. purified BC pellicles were rinsed	Gasoline~180	Combustion:	Y	N	7
N. (1	and freeze-drying		0 1: 500/			
Nanofiber	2 purchasis at 700, 1200aC under	Chloroform~285	Gasolin~59%			
Aerogels	2. pyrolysis at 700–1300oC under argon atmosphere		after 5 cycles;			
from BC			cycles,			
TOTT BC			Distillation:			
			1-			
			octane~100			
			% after 5			
			cycles;			
Graphene-	1. Preparation of GO	Pump oil~31	None	N	N	27
based	2. Preparation of Cu nanoparticles	Diesel oil~34				
Aerogels	3. graphene-based hydrogels					
	4. freeze-drying					
Spongy	1. Preparation of GO	Chloroform~85	Heat	N	N	5
Graphene	2. hydrothermal treatment of	Kerosene~45	treatment:			
	colloidal GO dispersion to prepare	D	Toluene~98			
	graphene gel	Pump oil~77	% after 10			
					'	
	3. freeze-drying		cycles;			

Graphene- based Sponges	 hydrophobic graphene nanosheets were obtained by exfoliation of expanded graphite commercial sponge was cleaned ultrasonically with acetone and distilled water successively and dried dipping into a dispersion of graphene nanosheets in ethanol 	Chloroform~165 Hexane~54 Pump oil~92 Used pump oil~87 Motor oil~92	3% after 10 cycles. Squeezing: Motor oil~30% after 2 cycles	N	N	28
Nitrogen-Doped Graphene Framework	 1.oxidation of the natural graphite powder using a modified Hummers method 2. preparation of ultralight N- doped Graphene gel in autoclave 3. freeze-dried graphene gel 4. heating at 1050 °C for 3h under Ar atmosphere 	Cyclohexane~320 Chloroform~500 Gasoline~280	N	N	N	29
CNT Sponge	1. The CNT sponges were prepared by chemical vapor deposition (CVD)	Diesel oil~112 Octane~108	Burning: Diesel oil~36% after 10 cycles; Squeezing: Diesel oil~18% after 10 cycles.	N	N	8
3D Graphene/CNT Hybrid Foam	 growing graphene on nickel (Ni) foam the graphene–Ni substrate is immersed into polyethylene glycol/ethanol solution Ni(NO3)2 and dried 	Chloroform~105 Toluen~125	Rinsing- drying: Toluen~82% after 6 cycles.	N	N	4

	3. CNTs are CVD-grown at 750 1C4. Ni foam was etched away to obtain 3D graphene-CNT hybrid foam					
Hydrophobic	1.Gelatin crosslinked by	Crude oil~70	Compression	Y	Υ	Our
cGel aerogel	formaldehyde	Gasoline~81	:			wor
	2.Freeze drying	Keresene~83				k
	3. Hydrophobic coating by MTCS (CVD)	Silicon oil~118	83% after Compression			
		Pump oil~119	in kerosene			
		Waste pump oil~105	for 5000 times			
		Paraffin oil~92				
		Toluene~107				
		Chloroform~123				