Supporting Information

Two-step Synthesis of Binary Ni-Fe Sulfides Supported on Nickel Foam as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction

Bin Dong^{*a, b}, Xin Zhao^a, Guan-Qun Han^{a, b}, Xiao Li^a, Xiao Shang^a,

Yan-Ru Liu^a, Wen-Hui Hu^a, Yong-Ming Chai^a, Hui Zhao^{*a}, Chen-Guang Liu^{*a}

a State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East

China), Qingdao 266580, PR China

b College of Science, China University of Petroleum (East China), Qingdao 266580, PR China

^{*} Corresponding author. Email: <u>dongbin@upc.edu.cn (B. Dong)</u>, <u>zhaohui@upc.edu.cn (H. Zhao)</u>, <u>cgliu@upc.edu.cn (C.-G. Liu)</u> Tel: +86-532-86981376, Fax: +86-532-86981787

Fig. S1 (a, b, c) HR-TEM images of NiFe/NF; (d) Selected area electron diffraction image of NiFe/NF.

Fig. S2 (a, b, c) HR-TEM images of NiFeS-Fe/NF; (d) Selected area electron diffraction image of NiFeS-Fe/NF.

Fig. S3 CVs of the double-layer capacitance measurement for the four different samples in 1 M KOH in the non-Faradaic region of -0.05-0.05 V vs. SCE with different scan rates, varying from 40 mV s⁻¹ to 200 mV s⁻¹: (a) NiFe/NF; (b) NiFeS/NF; (c) NiFeS-Fe/NF and (d) Ni_xS_y/NF.

Calculation of electrochemical surface area (ECSA) and roughness factor (RF)^{1,2}

According to the previous literature, the electrochemical surface area (ECSA) and the roughness factor (RF) can be calculated based on following equations.

 $ECSA=C_{dl}/C_s$

RF=ECSA/GSA

 C_{dl} : the measured double layer capacitance of NiFe/NF, NiFeS/NF and NiFeS-Fe/NF electrode in 1 M KOH (in mF);

 C_s : the specific capacitance, according to the literature, the value is 0.040 mF cm⁻² in 1M NaOH;

GSA: the geometric surface area of NiFe/NF, NiFeS/NF and NiFeS-Fe/NF electrode, which is 1 cm²

Fig. S4 Stability test of NiFe/NF after 500 cycles.

Fig. S5 (a, c, e) SEM image of NiFe/NF before stability test; (b, d, f) SEM image of NiFe/NF after stability test.

Fig. S6 Stability test of NiFeS/NF and NiFeS-Fe/NF after 1000 cycles.

Fig. S7 (a) SEM image of NiFeS/NF before stability test of 1000 cycles;(b) SEM image of NiFeS/NF after stability test of 1000 cycles.

Fig. S8 (a, b) SEM image of NiFeS-Fe/NF before stability test of 1000 cycles; (c, d) SEM image of NiFeS-Fe/NF after stability test of 1000 cycles.

Table S1. The calculated ECSA and RF of the as-prepared NiFe/NF, $\mathrm{Ni}_x\mathrm{S}_y/\mathrm{NF},$

Sample	C _{dl} (mF)	C _s (mF cm ⁻²)	ECSA (cm ²)	GSA (cm ²)	RF
NiFe/NF	6.95	0.04	173.75	1	173.75
Ni _x S _y /NF	9.37	0.04	234.25	1	234.25
NiFeS/NF	10.05	0.04	251.25	1	251.25
NiFeS-Fe/NF	8.20	0.04	205.00	1	205.00

NiFeS/NF and NiFeS-Fe/NF samples ^{1,2}.

Reference

- 1 C. C. L. McCrory, S. Jung, J. C. Peters, T. F. Jaramillo, J. Am. Chem. Soc., 2013, 135, 16977.
- 2 X. Y. Lu, C. Zhao, Nat. Commun., 2015, 6, 6616.