Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Light-assisted rapid preparation of Ni/g-C₃N₄ magnetic composite for robust photocatalytic H₂ evolution from water

Linggang Kong, Yuming Dong*, Pingping Jiang, Guangli Wang, Huizhen Zhang and Na Zhao

* E-mail: dongym@jiangnan.edu.cn.

Fax: +8651085917763

The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China

Figure S1. SEM image of Ni/g-C₃N₄ on FTO conductive glass.

Figure S2. XRD patterns of sample E, F and G obtained by control experiments in Table 1.

Figure S3. TEM images of Ni/g- C_3N_4 at low magnification (left) showing the distribution of nanoparticle sizes.

Figure S4. Comparison of photocatalytic activity of Ni-7.4 wt%/g-C₃N₄ and Pt-7.4 wt%/g-C₃N₄. The system contains 10 mg photocatalyst, 10 mL 30 vol% TEOA aqueous solution. The data were obtained by photocatalytic process of 3 h using 300 W Xe lamp with an AM 1.5G filter as light source. Preparation of Pt/g-C₃N₄: 7.4 wt% Pt was loaded on g-C₃N₄ in-situ by photoreduction method using H₂PtCl₆.

Figure S5. The photograph of outdoor equipment of sunlight-driven water splitting by Ni-7.4wt%/ g-C₃N₄ system in Wuxi city on June. 12, 2015. Outdoor temperature: $24 \sim 33^{\circ}$ C, time: 09:30-17:00.

Figure S6. XRD of Ni-7.4%/g- C_3N_4 before and after photocatalysis.

Figure S7. IR of Ni-7.4%/g- C_3N_4 before and after photocatalysis.

Figure S8. EDX-Mapping of Ni-7.4%/g- C_3N_4 after 48 h photocatalysis.

Figure S9. TEM (a) and HRTEM (b) image of Ni-7.4wt%,/g- C_3N_4 after 48 h photocatalysis.

Figure S10. The photograph of using magnets to attract samples.

Cocatalysts	Mass fraction	sacrificial agent	Light source	Activity (µmolg ⁻¹ h ⁻¹)	Quantum yield	Ref.
[Ni(TEOA)] ₂ Cl ₂	2.0 wt% of Ni ²⁺	triethanolamine	500 W Xe lamp	2435	1.51 % (400 nm)	S1
Ni(OH) ₂	0.5 mol%	triethanolamine	350 W Xe lamp	152	1.1% (420 nm)	S 2
NiS	1.1 wt%	triethanolamine	300 W Xe lamp	482	1.9 % (440 nm)	S 3
Co ^{III} (dmgH) ₂ pyCl	/	triethanolamine	300 W Xe lamp	216.7	0.62% (365 nm)	S4
NiS ₂	2.0 wt%	triethanolamine	300 W Xe lamp	406	/	S5
Ni-Tu-TETN	/	triethanolamine	300 W Xe lamp	510	0.2% (420 nm)	S 6
NiS	1.5 mol%	triethanolamine	300 W Xe lamp	447.7	/	S7
Ni(dmgH) ₂	3.5 wt%	triethanolamine	300 W Xe lamp	236	/	S 8
MoS_2	2.89 wt%	triethanolamine	300 W Xe lamp	252	/	S 9
Ni	10wt%	triethanolamine	500W Xe lamp	168.2	/	S 10
NiS	0.97wt%	triethanolamine	150 W Xe lamp	84	1.4%	S11

Table S1. Photocatalytic H_2 evolution on g- C_3N_4 with non-noble-metal cocatalysts.

					(420 nm)	
Ni/NiO	2 wt%	triethanolamine	300 W Xe lamp	200	/	S12
C ₃ N ₃ S ₂ Ni	0.1 wt%	triethanolamine	300 W Xe lamp	110	2.6 % (420 nm)	S13
Ni	0.73 wt%	triethanolamine	300 W Xe lamp	103	/	S 14
Ni	7.4wt%	triethanolamine	300 W Xe lamp	4318	2.01% (400 nm)	This work

References

- S1 J. Dong, M. Wang, X. Li, L. Chen, Y. He, L. Sun, *ChemSusChem.*, 2012, 5, 2133.
- S2 J. Yu, S. Wang, B. Cheng, Z. Lin, F. Huang, Catal. Sci. Technol., 2013, 3, 1782.
- S3 J. Hong, Y. Wang, W. Zhang, R. Xu, ChemSusChem, 2013, 6, 2263.
- S4 S. W. Cao, X. F. Liu, Y. P. Yuan, Z. Y. Zhang, J. Fang, S. C. Loo, J. Barber, T. C. Sum, C. Xue, *Phys. Chem. Chem. Phys.*, 2013, 15, 18363.
- S5 L. Yin, Y. P. Yuan, S.W. Cao, Z. Zhang, C. Xue, RSC Adv., 2014, 4, 6127.
- S6 D. Wang, Y. Zhang, W. Chen, Chem. Commun., 2014, 50, 1754.
- S7 Z. Chen, P. Sun, B. Fan, Z. Zhang, X. Fang, J. Phys. Chem. C, 2014, 118, 7801.
- S8 S. W. Cao, Y. P. Yuan, J. Barber, S. C. J. Loo, C. Xue, *Appl. Surf. Sci.*, 2014, 319, 344.
- S9 H. Zhao, Y. Dong, P. Jiang, G. Wang, H. Miao, R. Wu, L. Kong, J. Zhang, C. Zhang, J. Mater. Chem. A, 2015, 3, 7375.
- S10 L. Bi, D. Xu, L. Zhang, Y. Lin, D. Wang, and T. Xie, *Phys. Chem. Chem. Phys.*, 2015, 17, 29899.
- S11 Y. Lu, D. Chu, M. Zhu, Y. Du and P. Yang, Phys. Chem. Chem. Phys., 2015, 17, 17355.
- S12 G. Zhang, G. Li, X. Wang, ChemCatChem, 2015, 7, 2864.
- S13 Y. Chen, B. Lin, W. Yu, Y. Yang, S. M. Bashir, H. Wang, K. Takanabe, H. Idriss
 J. M. Basset, *Chem. Eur. J.*, 2015, 21, 10290.
- A. Indra, P. W. Menezes, K. Kailasam, D. Hollmann, M. Schröder, A. Thomas,A. Brückner, M. Driess, *Chem. Commun.*, 2016, 52, 104.