Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Benign Role of Bi on Electrodeposited Cu₂O Semiconductor towards Photo-Assisted H₂ Generation from Water

Sanjib Shyamala, Paramita Hajraa, Harahari Mandala, Aparajita Beraa, Debasis Sariketa,

Ashis Kumar Satpati^b, Sukumar Kundu^c and Chinmoy Bhattacharya^{a*}

^a Department of Chemistry, Indian Institute of Engineering Science & Technology,(IIEST), Shibpur,Howrah – 711103, West Bengal, INDIA

^b Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, INDIA

^c Department of Metallurgy & Materials Engineering, Indian Institute of Engineering Science & Technology,(IIEST), Shibpur,Howrah – 711103, West Bengal, INDIA

Email: cbhattacharya.besus@gmail.com

Scheme 1(a-d): Electrodeposition of Cu₂O from different conditions.

Fig. S1. (a) LSV plot in presence of 0.1 M Na₂SO₄ electrolyte (pH 4.9) under chopped light illumination of 35 mW cm⁻² at a scan rate of 10mV s⁻¹ for optimization of deposition time of BiNPs film followed by Cu₂O deposition; **(b,** Bar plot) Variation of photogenerated current densities measured at a potential of 0.4 V vs RHE.

The optimized deposition time for BiNP film is 8 min. Cu₂O film developed over this film shows maximum photocurrent in photoelectrochemical reduction of water under illumination.

Fig. S2. (a) LSV plot in presence of 0.1 M Na₂SO₄ electrolyte (pH 4.9) under chopped light illumination of 35 mW cm⁻² at a scan rate of 10mV s⁻¹ for optimization of Bi³⁺ ions concentration in the Cu₂O electrodeposition bath. **(b,** Bar plot**)** Variation of photogenerated current densities measured at a potential of 0.4 V vs RHE.

The optimized Bi^{3+} ions concentration in Cu_2O electrodeposition bath is 10nmM. Cu_2O film developed over this film shows maximum photocurrent in photoelectrochemical reduction of water under illumination.

Fig. S3. LSV plot of BiNP on ITO in presence of 0.1 M Na₂SO₄ electrolyte (pH 4.9) under chopped light illumination of 35 mW cm⁻² at a scan rate of 10mV s⁻¹.

Fig. S4. Potential – Time curve during the deposition process of Cu_2O in different condition.

Fig. S5. Cross sectional SEM images of thin film semiconductor (a) ITO/BiNP_{film}/Cu₂O,

(b) ITO/BiNP_{sus}/Cu₂O, (c) ITO/Bi_{ion}/Cu₂O, and (d) ITO/Cu₂O.

Fig. S6. SEM image of the BiNP film on ITO glass substrate.

Fig. S7. Elemental mapping of Cu (Green), O (Red), and Bi (Yellow) obtained from different samples.

Fig. S8. XRD pattern of BiNP thin film on ITO substrate.

Fig. S9. Photoelectrochemical Action spectrum of Cu_2O thin films on ITO substrates in presence of BiNPs and Bi ion using 0.1 M Na_2SO_4 electrolyte (pH 4.9) at an applied potential of 0.4 V vs RHE.

Fig. S10. Photoelectrochemical reduction of methyl viologen (sacrificial reagent) $[MV^{2+}_{colorless} \rightarrow MV^{+\bullet}_{deep \ blue}] \ over \ ITO/BiNP_{film}/Cu_2O \ electrodes \ under \ illumination.$

Fig. S11. Mott-Schottky plots of ITO/BiNP_{film}/Cu₂O sample in presence of 0.1 M Na_2SO_4 electrolytes (pH 4.9) using an ac frequencies of 200, 500, and 1000 Hz.

Fig. S12. Mott-Schottky plots of BiNP thin film on ITO in presence of 0.1 M Na_2SO_4 electrolytes (pH 4.9) using an ac frequencies of 200, 500, and 1000 Hz.

Table S1. Variation of atomic percentage of the constituent elements in the Cu_2O thin films developed in presence of BiNP and Bi³⁺ ions.

Sample description	Elements	Atomic%	
	Cu	64.34	
ITO/BiNP _{film} /Cu ₂ O	0	35.43	
	Bi	0.23	
ITO/BiNP _{sus} /Cu ₂ O	Cu	64.23	
	0	35.56	
	Bi	0.21	
ITO/Bi _{ion} /Cu ₂ O	Cu	65.49	
	0	34.30	
	Bi	0.21	
	Cu	57.19	
	0	42.81	
ITO/BiNP	Bi	100	

Table S2. Variation of equivalent circuit (EC) parameters of the Cu_2O thin films developed in presence of BiNP and Bi³⁺ ions.

Sample	R _s (Ω)	R _{ct} (Ω)	C _{ct} (F)	Error
ITO/BiNP _{film} /Cu ₂ O	73.28	30.61	2.4 × 10 ⁻⁴	1.51 × 10 ⁻⁹
ITO/BiNP _{sus} /Cu ₂ O	81.14	56.68	9.6 × 10 ⁻⁵	1.60 × 10 ⁻⁹
ITO/Bi _{ion} /Cu ₂ O	86.43	78.84	8.7 × 10 ⁻⁵	1.52 × 10 ⁻⁹
ITO/Cu ₂ O	91.73	128.7	2.3 × 10 ⁻⁵	4.64 × 10 ⁻⁹

Table S.3.: Comparison of photoelectrochemical reduction of water over Cu_2O thin film on conducting glass substrates prepared under different deposition conditions, as available in literature to that with the as prepared Cu_2O , demonstrated in the present report.

SI. No	References	Substrates	Cu ₂ O synthesized through	Electrolyte for characteri zation	Light intensity used	Maximum photocurrent density obtained for $H_2O \rightarrow H_2$ reaction
01	Present work: Cu ₂ O film developed in presence of (a) BiNP film (b) BiNP suspension (c) Bi ³⁺ ion	ITO glass	Electrodepo sition	0.1 (M) Na₂SO₄ at pH ~ 4.9	35 mW cm ⁻²	a) -5.2 mA cm ⁻² b) -4.9 mA cm ⁻² c) -3.7 mA cm ⁻²
02	J. Phys. Chem. C, 2012, 116, 7341-7350	100 nm Au and 10 nm Cr adhesion layer coated FTO glass	Electrodepo sition	1.0 (M) Na₂SO₄ at pH ~ 4.9	100 mW cm ⁻²	-2.4 mA cm ⁻²
03	J. Mater. Chem., 2012, 22, 2456–2464	Cu coated ITO glass	Electrodepo sition followed by anodization	0.5(M) Na₂SO₄ at pH ~ 6.82	100 mW cm ⁻²	-0.37 mA cm ⁻²
04	Int. Journal of Hydrogen Energy, 2008, 33,2897 – 2903	ITO glass	Electrodepo sition	0.5 (M) Na₂SO₄	50 mW cm ⁻²	-0.025 mA cm ⁻²
05	Electrochimica Acta, 2012, 62, 1– 7	FTO glass	Electrodepo sition	0.1 (M) Na₂SO₄	100 mW cm ⁻²	-0.06 mA cm ⁻²
06	ACS Appl. Mater. Interfaces, 2015, 7, 18344–18352	ITO Glass	Electrodepo sition	0.1 (M) Na₂SO₄ at pH ~ 4.9	35 mW cm ⁻²	-2.6 mA cm ⁻²