## Inexpensive polyphenylene network polymers\_with enhanced microporosity

Kadhum J. Msayib, and Neil B. McKeown

## Contents

**ESI Table 1.** Summary of previous work involving porous network formation via aromatic coupling or Friedel-Craft reactions using the same monomers as the present study.

- 1. Materials.
- 2. Characterization methods.
- 3. General procedure for polymer preparation followed by specific reaction details, N<sub>2</sub> and CO<sub>2</sub> absorption, TGA and <sup>13</sup>C SSNMR characterisation.
  - a. Polymer from 1,3,5-triphenylbenzene/DCM.
  - b. Polymer from 1,3,5-triphenylbenzene/chloroform.
  - c. Polymer from 1,3,5-triphenylbenzene/DCE.
  - d. Polymer from triptycene/DCM.
  - e. Polymer from 9,9'-spirobifluorene/DCM.
  - f. Polymer from hexaphenylbenzene/DCM.
  - g. Polymer from biphenyl/DCM.
  - i. Polymer from biphenyl/chloroform.
  - j. Polymer from biphenyl/DCE.
  - k. Polymer from triphenylene/DCM
  - 1. Polymer from 9,10-diphenyl anthracene/DCM.
  - m. Polymer from tetraphenylporphyrin/DCM

**ESI Table 1.** Summary of previous work involving porous network formation via aromatic coupling or Friedel-Craft reactions using the same monomers as the present study.



| monomers                    | polymer   | Reaction                                  | solvent           | $SA_{BET}$     | $V_{total}$     | $CO_2$                  |    |
|-----------------------------|-----------|-------------------------------------------|-------------------|----------------|-----------------|-------------------------|----|
|                             |           |                                           |                   | $(m^2 g^{-1})$ | $(cm^3 g^{-1})$ | Uptakeª                 |    |
|                             |           |                                           |                   |                |                 | $(\text{mmol } g^{-1})$ |    |
| Triptycene                  | THPS      | FC: FDA, FeCl <sub>3</sub> , 80 °C, 24 h. | DCE               | 1426           | 820             | 3.1                     | 1  |
| Triptycene                  | Polymer4  | FC: FDA, FeCl <sub>3</sub> , 80 °C, 24 h. | DCE               | 1252           | 550             | -                       | 2  |
| Triptycene-Br <sub>3</sub>  | STP-1     | Yamamoto                                  | DMF               | 1305           | 800             | 3.4                     | 3  |
| Triptycene-I <sub>3</sub>   | STP-2     | Yamamoto                                  | DMF               | 1990           | 950             | 3.8                     | 3  |
| TPB                         | PAF-48    | Scholl: FeCl <sub>3</sub> , 60 °C, 24 h.  | CHCl <sub>3</sub> | 972            | 380             | 3.6                     | 4  |
| TPB                         | SMP-1     | Scholl: AlCl <sub>3</sub> , 58 °C, 24 h.  | CHCl <sub>3</sub> | 1254           | 650             | 4.1                     | 5  |
| TPB                         | Polymer 3 | FC: FDA, FeCl <sub>3</sub> , 80 °C, 24 h. | DCE               | 1059           | 450             | 3.6                     | 6  |
| TPB-Br <sub>3</sub>         | PAF-5     | Yamamoto                                  | DMF               | 1503           | 1000            | -                       | 7  |
| TPB-Br <sub>3</sub>         | COP-3     | Yamamoto                                  | DMF               | 1869           | 1.4             | -                       | 8  |
| SBF-Br <sub>4</sub>         | YSN-1     | Yamamoto                                  | DMF               | 1970           | 1100            | -                       | 9  |
| $SBF-Br_4$                  | YSN-1     | Yamamoto                                  | DMF               | 1275           | 750             | -                       | 10 |
| HPB-Br <sub>6</sub>         | HP        | Yamamoto                                  | DMF               | 673            | 300             | 1.9                     | 11 |
| Biphenyl                    | PAF-45    | Scholl: FeCl <sub>3</sub> , 60 °C, 24 h.  | CHCl <sub>3</sub> | 777            | 180             | 2.0                     | 4  |
| Biphenyl                    | Polymer 2 | FC: FDA, FeCl <sub>3</sub> , 80 °C, 24 h. | DCE               | 815            | 300             | 3.1                     | 6  |
| TPP                         | SMP-4     | Scholl: AlCl <sub>3</sub> , 58 °C, 24 h.  | CHCl <sub>3</sub> | 757            | 450             | 3.1                     | 5  |
| TPM                         | PAF-41    | Scholl: AlCl <sub>3</sub> , 60 °C, 24 h.  | CHCl <sub>3</sub> | 1119           | 400             | 3.5                     | 12 |
| TPM                         | PAF-32    | FC: FDA, FeCl <sub>3</sub> , 45 °C, 72 h. | DCM               | 1679           | 700             | 1.7                     | 13 |
| <sup>a</sup> at 273 K/1 har |           | -                                         |                   |                |                 |                         |    |

at 273 K/1 bar.

1. Materials. Anhydrous aluminium chloride (AlCl<sub>3</sub>) (Merck 99%), triptycene (Aldrich 98%), triphenylene (Aldrich 98%), 1,3,5-triphenylbenzene (Aldrich 97%), hexaphenylbenzene (Aldrich 98%), 9,10-diphenylanthracene (Fluka 9,9'-98%), spirobifluorene (Aldrich 97%), biphenyl (Alfa-Aesar 99%), tetraphenyl methane (Alfa-Aesar 96%), tetraphenylporphyrin (Aldrich 97%), dichloroethane (DCE, Fisher HPLC grade), dichloromethane (DCM; Fisher HPLC grade), chloroform (CHCl<sub>3</sub> Fisher HPLC grade), tetrahydrofuran (THF VWR Chemical), ethanol (VWR Chemical) and methanol (Fisher) were all used as supplied.

**2.** Characterization methods. The structures of the polymeric materials were characterized using solid-state <sup>13</sup>C-NMR spectroscopy using a Varian VNMRS & Bruker Avance III HD and carried out by the EPSRC UK Solid State NMR Service at Durham University. Thermogravimetric analysis (TGA) was performed using a TA Instruments, model SDT Q600 Analyzer. Surface area was obtained by nitrogen adsorption/desorption at 77 K using a Coulter SA 3100 instrument (with foreline filter to avoid contamination with oil vapour). CO<sub>2</sub> adsorption isotherms were measured using a Quadrasorb Evo instrument at 273 K. Elemental analysis (C, H, N, Cl) was performed by Warwick Analytical Services.

## 3. General procedure for polymer preparation.

**a.** Polymer from 1,3,5-triphenylbenzene/DCM. Under a nitrogen atmosphere, anhydrous aluminium chloride (4.9 g, 36.8 mmol) was added to a solution of 1,3,5-triphenylbenzene (1.51 g, 4.9 mmol) in refluxing DCM (60 ml) and the mixture was stirred at reflux for 18-24 h. The resulting brown precipitate was collected by filtration and washed with water then ethanol. The polymer was then dispersed sequentially in the following solvents at reflux for six hours: ethanol, chloroform, THF, acetone and methanol. The brown product was then ground into a fine powder and dried in a vacuum oven at 80 °C for 18 h. Yield: 112% based on ideal structure. Solid-state <sup>13</sup>C NMR (100.5 MHz):  $\delta$  ppm 139.6, 132.0, 55.3, 34.9. N<sub>2</sub> adsorption (77 K):  $SA_{BET} = 2518 \text{ m}^2 \text{ g}^{-1}$ , total pore volume =1.7 ml g<sup>-1</sup>; CO<sub>2</sub> adsorption at 273 K/1 bar = 5.9 mmol g<sup>-1</sup>, at 295 K/1 bar = 3.6 mmol g<sup>-1</sup>; TGA: Thermal degradation commences at 280 °C. Elemental analysis: calculated for ideal repeat unit [C<sub>24</sub>H<sub>15</sub>]: C 95.02, H 4.98, Cl 0.0 %; found: C 77.00, H 4.21, Cl 0.83 %.



ESI Fig. 1 N<sub>2</sub> (77 K) and CO<sub>2</sub> (273 K) isotherms of the network polymer derived from TPB.



**ESI Fig. 2** SSNMR of the network polymer derived from TPB. The peaks at 12.0 and 270 ppm are spinning side-bands.



ESI Fig. 3 TGA of the network polymer derived from TPB.

**b.** Polymer from 1,3,5-triphenylbenzene/chloroform. A brown powder was obtained using the general procedure from 1,3,5-triphenylbenzene (1.5 g, 4.89 mmol) with AlCl<sub>3</sub> (6.4 g, 48 mmol) in chloroform (60 ml). Yield: 105%. Solid-state <sup>13</sup>C NMR (100.5MHz):  $\delta$  ppm 190.4, 140.3, 127.4, 74.0, 64.0, 54.3. N<sub>2</sub> adsorption (77 K):  $SA_{BET} = 1414 \text{ m}^2 \text{ g}^{-1}$  (literature value = 1254 m<sup>2</sup> g<sup>-1</sup>)<sup>5</sup>; total pore volume = 0.73 ml g<sup>-1</sup>; CO<sub>2</sub> adsorption (273 K/1 bar,) = 5.0 mmol g<sup>-1</sup> (literature value = 4.1 mmol g<sup>-1</sup>)<sup>5</sup> CO<sub>2</sub> adsorption (295 K/1 bar = 3.2 mmol g<sup>-1</sup>); TGA: thermal degradation commences at 288 °C. Elemental analysis: calculated for ideal repeat unit [C<sub>24</sub>H<sub>15</sub>]: C 95.02, H 4.98 Cl 0.0 %; found: C 71.81, H 3.66, Cl 5.4 %.

c. From 1,3,5-triphenylbenzene/DCE. A brown powder was obtained using the general procedure from 1,3,5-triphenylbenzene (1.07 g, 3.5 mmol) with AlCl<sub>3</sub> (5 g, 37.5 mmol) in DCE (60 ml). Yield: 99%. Solid-state <sup>13</sup>C NMR (100.5MHz):  $\delta$  ppm 137.7, 37.1, 14.6. N<sub>2</sub> adsorption (77 K):  $SA_{BET} = 725 \text{ m}^2 \text{ g}^{-1}$ , total pore volume = 0.68 ml g<sup>-1</sup>; CO<sub>2</sub> adsorption at 273 K/1 bar = 1.7 mmol g<sup>-1</sup>, at 295 K/1 bar = 1.2 mmol g<sup>-1</sup>; TGA: thermal degradation commences at 334 °C. Elemental analysis: calculated for ideal repeat unit [C<sub>24</sub>H<sub>15</sub>]: C 95.02, H 4.98, Cl 0.0%; found: C 79.99, H 5.83, Cl 1.01%.

**d.** Polymer from triptycene/DCM. A brown powder was obtained using the general procedure from triptycene (1.11 g, 4.36 mmol) with AlCl<sub>3</sub> (5.7 g, 42.8 mmol) in DCM (40 ml). Yield = 109%. Solid-state <sup>13</sup>C NMR (100.5 MHz):  $\delta$  ppm 140.6, 131.0, 65.9, 55.0, 51.0, 37.5. N<sub>2</sub> adsorption (77 K):  $SA_{BET} = 1750 \text{ m}^2 \text{ g}^{-1}$ , total pore volume = 1.0 ml g<sup>-1</sup>; CO<sub>2</sub> adsorption at 273 K/1 bar = 5.8 mmol g<sup>-1</sup>, at 295 K/1 bar = 3.1 mmol g<sup>-1</sup>; TGA: Thermal degradation commences at 265 °C. Elemental analysis: calculated for ideal repeat unit [C<sub>20</sub>H<sub>11</sub>]: C 95.6, H 4.4, Cl 0.0 %; C 81.46, H 4.51, Cl 2.77 %.



**ESI Fig. 4**  $N_2$  (77 K) and CO<sub>2</sub> (273 K) isotherms of the network polymer derived from triptycene.



**ESI Fig. 5** SSNMR of the network polymer derived from triptycene. The broad peaks at 12.9 and 250 ppm are spinning side-bands.



ESI Fig. 6 TGA of the network polymer derived from triptycene.

e. Polymer from 9,9'-spirobifluorene/DCM. A brown powder was obtained using the general procedure from 9,9'-spirobifluorene (0.88 g, 2.8 mmol) with AlCl<sub>3</sub> (3.88 g, 29.13 mmol) in DCM (30 ml). Yield: 109%. Solid-state <sup>13</sup>C NMR (100.5 MHz):  $\delta$  ppm 140.3, 132.5, 127.8, 66.0, 57.4, 36.0. N<sub>2</sub> adsorption (77 K):  $SA_{BET} = 2036 \text{ m}^2 \text{ g}^{-1}$ , total pore volume = 1.0 ml g<sup>-1</sup>; CO<sub>2</sub> adsorption at 273 K/1 bar = 5.8 mmol g<sup>-1</sup>, at 295 K/1 bar = 3.0 mmol g<sup>-1</sup>; TGA: Thermal degradation commences at 305 °C. Elemental analysis: calculated for ideal repeat unit [C<sub>25</sub>H<sub>12</sub>]: C 96.12, H 3.82 Cl 0.0 %; found: C 79.36, H 4.09, Cl 1.97 %.



**ESI Fig. 7**  $N_2$  (77 K) and CO<sub>2</sub> (273 K) isotherms of the network polymer derived from spirobifluorene.



**ESI Fig. 8** SSNMR of the network polymer derived from spirobifluorene. The broad peaks at 12.0 and 270 ppm are spinning side-bands.



ESI Fig. 9 TGA of the network polymer derived from spirobifluorene.

**f.** Polymer from hexaphenylbenzene/DCM. A brown powder was obtained using the general procedure from hexaphenylbenzene (0.9 g, 1.68 mmol) with AlCl<sub>3</sub> (3 g, 22.5 mmol) in DCM (40 ml). Yield: 110% Solid-state <sup>13</sup>CNMR (100.5 MHz):  $\delta$  ppm 136.5, 131.5, 67.0, 33.7. N<sub>2</sub> adsorption (77 K):  $SA_{BET} = 1791 \text{ m}^2 \text{ g}^{-1}$ , total pore volume = 0.9 ml g<sup>-1</sup>; CO<sub>2</sub> adsorption at 273 K/1 bar = 4.5 mmol g<sup>-1</sup>, at 295 K/1 bar = 2.7 mmol g<sup>-1</sup>; TGA: Thermal degradation commences at 270 °C. Elemental analysis: calculated for ideal repeat unit [C<sub>42</sub>H<sub>24</sub>]: C 95.42, H 4.57, Cl 0.0 %; found: C 78.6, H 4.43, Cl 2.36 %.



ESI Fig. 10 N<sub>2</sub> (77 K) and CO<sub>2</sub> (273 K) isotherms of the network polymer derived from HPB.



**ESI Fig. 11** SSNMR of the network polymer derived from HPB. The peaks at 13.0 ppm is a spinning side-band.



ESI Fig. 12 TGA of the network polymer derived from HPB.

**g.** Polymer from biphenyl/DCM. A brown powder was obtained using the general procedure from biphenyl (1.18 g, 7.65 mmol) with AlCl<sub>3</sub> (4.8 g, 36 mmol) in DCM (30 ml). Yield = 106%. Solid-state <sup>13</sup>C NMR (100.5MHz):  $\delta$  ppm 139.5, 131.5, 55.0, 35.2. N<sub>2</sub> adsorption (77 K):  $SA_{BET} = 1552 \text{ m}^2 \text{ g}^{-1}$ ; total pore volume = 1.0 ml g<sup>-1</sup>; CO<sub>2</sub> adsorption at 273 K/1 bar = 4.0 mmol g<sup>-1</sup>, at 295 K/1 bar = 2.7 mmol g<sup>-1</sup>; TGA: Thermal degradation commences at 270 °C. Elemental analysis: calculated for ideal repeat unit [C<sub>12</sub>H<sub>8</sub>]: C 94.7, H 4.4, Cl 0.0 %; found: C 83.66, H 4.7, Cl 1.51%.



**ESI Fig. 13**  $N_2$  (77 K) and CO<sub>2</sub> (273 K) isotherms of the network polymer derived from biphenyl.



**ESI Fig. 14** SSNMR of the network polymer derived from biphenyl. The broad peak at 13.0 is a spinning side-band.



**ESI Fig. 15** TGA of the network polymer derived from biphenyl.

**i. Polymer from biphenyl/chloroform.** A brown powder was obtained using the general procedure from biphenyl (1.19 g, 7.71 mmol) with AlCl<sub>3</sub> (5.3 g, 39 mmol) in chloroform (35 ml). Yield =108%. Solid-state <sup>13</sup>C NMR (100.5 MHz):  $\delta$  ppm 190.1, 140.3, 126.4, 82.6, 54.8. N<sub>2</sub> adsorption (77 K):  $SA_{BET}$  = 799 m<sup>2</sup> g<sup>-1</sup> (literature value = 777 m<sup>2</sup> g<sup>-1</sup>)<sup>4</sup>; total pore volume = 0.45 ml g<sup>-1</sup>; CO<sub>2</sub> adsorption (1 bar, 273 K) = 3.3 mmol g<sup>-1</sup> (literature value = 3.3 mmol g<sup>-1</sup>)<sup>4</sup> at 295 K/1 bar = 2.4 mmol g<sup>-1</sup>; TGA: Thermal degradation commences at 338 °C. Elemental analysis: calculated for ideal repeat unit [C<sub>12</sub>H<sub>8</sub>]: C 94.7, H 4.4, Cl 0.0 %; found: C 68.03, H 3.55, Cl 10.44 %.

**j. Polymer from biphenyl/DCE.** A brown powder was obtained using the general procedure from biphenyl (1.52g, 9.85 mmol) with AlCl<sub>3</sub> (7g, 52 mmol) in DCE (55 ml). Yield = 90%. Solid-state <sup>13</sup>C NMR (100.5MHz):  $\delta$  ppm 136.7, 35.3, 15.1. N<sub>2</sub> adsorption (77 K): *SA*<sub>BET</sub> = 453 m<sup>2</sup> g<sup>-1</sup>; total pore volume= 0.3 ml g<sup>-1</sup>; CO<sub>2</sub> adsorption at 273 K/1 bar = 1.7 mmol g<sup>-1</sup>, at 295 K/1 bar = 1.0 mmol g<sup>-1</sup>; TGA: Thermal degradation commences at 280 °C. Elemental analysis: calculated for ideal repeat unit [C<sub>12</sub>H<sub>8</sub>]: C 94.7, H 4.4, Cl 0.0 %; found: C 77.85, H 5.83, Cl 1.1%.

**k.** Polymer from triphenylene/DCM. A brown powder was obtained using the general procedure from triphenylene (1.15 g, 5.06 mmol) with AlCl<sub>3</sub> (4.5 g, 33.7 mmol) in DCM (30 mL). Yield: 102%. Solid-state <sup>13</sup>C NMR (100.5 MHz):  $\delta$  ppm 137.6, 129.9, 36.2. N<sub>2</sub> adsorption (77 K):  $SA_{BET} = 1181$  ml g<sup>-1</sup>, total pore volume = 0.66 ml g<sup>-1</sup>; CO<sub>2</sub> adsorption at 273 K/1 bar = 4.0 mmol g<sup>-1</sup>, at 295 K/1 bar = 2.9 mmol g<sup>-1</sup>; TGA: Thermal degradation commences at 345 °C. Elemental analysis: calculated for ideal repeat unit [C<sub>18</sub>H<sub>9</sub>]: C 95.97, H 4.02, Cl 0.0 %; found: C 78.72, H 3.84, Cl 1.47 %.



**ESI Fig. 16**  $N_2$  (77 K) and CO<sub>2</sub> (273 K) isotherms of the network polymer derived from triphenylene.



**ESI Fig. 17** SSNMR of the network polymer derived from triphenylene. The broad peak at 17.0 is a spinning side-band.



ESI Fig. 18 TGA of the network polymer derived from triphenylene.

**I. Polymer from 9,10-diphenyl anthracene/DCM**. A brown powder was obtained using the general procedure from 9,10-diphenyl anthracene (1.07 g, 3.23 mmol) with AlCl<sub>3</sub> (4.1 g, 30 mmol) in DCM (30 ml). Yield:100%. Solid-state <sup>13</sup>C NMR (100.5 MHz):  $\delta$  ppm 136.8, 127.1, 38.7. N<sub>2</sub> adsorption (77 K):  $SA_{BET} = 1018 \text{ m}^2 \text{ g}^{-1}$ , total pore volume = 0.6 ml g<sup>-1</sup>; CO<sub>2</sub> adsorption at 273 K/1 bar = 3.2 mmol g<sup>-1</sup>, at 295 K/1 bar = 2.0 mmol g<sup>-1</sup>; TGA: thermal degradation commences at 408 °C. Elemental analysis: calculated for ideal repeat unit [C<sub>26</sub>H<sub>12</sub>]: C 96.27, H 3.72, Cl 0.0 %; found: C 86.1, H 4.5, Cl 0.69.



**ESI Fig. 19**  $N_2$  (77 K) and CO<sub>2</sub> (273 K) isotherms of the network polymer derived from 9,10diphenylanthracene.



ESI Fig. 20 SSNMR of the network polymer derived from 9,10-diphenyl anthracene.



ESI Fig. 21 TGA of the network polymer derived from 9,10-diphenylanthracene.

**m.** Polymer from tetraphenylporphyrin/DCM. A black powder was obtained using the general procedure from 5,10,5,20-tetraphenylporphyrin (1.19 g, 1.94 mmol) with AlCl<sub>3</sub> (4.4 g, 33 mmol) in DCM (35 ml). Yield: 101%. Solid-state <sup>13</sup>C NMR (100.5MHz):  $\delta$  ppm 139.5, 127.9, 72.0, 40.2. N<sub>2</sub> adsorption (77 K): *SA*<sub>BET</sub> = 907 ml g<sup>-1</sup>, total pore volume = 0.44 ml g<sup>-1</sup>; CO<sub>2</sub> adsorption at 273 K/1 bar = 2.5 mmol g<sup>-1</sup>, at 295 K/1 bar = 2.0 mmol g<sup>-1</sup>; TGA: thermal degradation commences at 420 °C. Elemental analysis: calculated for ideal repeat unit [C<sub>44</sub>H<sub>30</sub>N<sub>4</sub>]: C 86, H 4.91, N 9.1, Cl 0.0%; found: C 68.03, H 3.66, N 6.61, Cl 1.51%.



**ESI Fig. 22**  $N_2$  (77 K) and CO<sub>2</sub> (273 K) isotherms of the network polymer derived from tetraphenylporphyrin.



ESI Fig. 23 SSNMR of the network polymer derived from tetraphenylporpyrin.



ESI Fig. 24 TGA of the network polymer derived from Tetraphenylporphyrin.

**From tetraphenylmethane/DCM.** A brown powder was obtained using the general procedure from tetraphenylmethane (1.08 g, 3.37 mmol) with AlCl<sub>3</sub> (5.2 g, 39 mmol) in DCM (30 ml). Yield: 49%. Solid-state <sup>13</sup>C NMR (100.5MHz):  $\delta$  ppm 143.9, 127.7, 82.2, 75.7, 64.9. N<sub>2</sub> adsorption (77 K): *SA*<sub>BET</sub> = 124 ml g<sup>-1</sup>, total pore volume = 0.2 ml g<sup>-1</sup>; CO<sub>2</sub> adsorption at 273 K/1 bar = 2.0 mmol g<sup>-1</sup>, at 295 K/1 bar = 1.3 mmol g<sup>-1</sup>; TGA: thermal degradation commences at 281 °C. Elemental analysis: calculated for ideal repeating unit [C<sub>25</sub>H<sub>16</sub>]: C 94.9, H 5.09, Cl 0.0%; found: C 78.15, H 4.74, Cl 2.46%.



**ESI Fig. 25**  $N_2$  (77 K) and CO<sub>2</sub> (273 K) isotherms of the network polymer derived from TPM.



**ESI Fig. 26** SSNMR of the network polymer derived from TPM. The peak at 14.0 ppm is a spinning side-band.



ESI Fig. 27 TGA of the network polymer derived from TPM.

## **ESI References**

- 1. C. Zhang, P.-C. Zhu, L. Tan, J.-M. Liu, B. Tan, X.-L. Yang and H.-B. Xu, *Macromolecules*, 2015, 48, 8509-8514.
- R. T. Woodward, L. A. Stevens, R. Dawson, M. Vijayaraghavan, T. Hasell, I. P. Silverwood, A. V. Ewing, T. Ratvijitvech, J. D. Exley, S. Y. Chong, F. Blanc, D. J. Adams, S. G. Kazarian, C. E. Snape, T. C. Drage and A. I. Cooper, J. Am. Chem. Soc., 2014, 136, 9028-9035.
- 3. C. Zhang, Y. Liu, B. Li, B. Tan, C.-F. Chen, H.-B. Xu and X.-L. Yang, ACS Macro Lett., 2012, 1, 190-193.
- 4. L. Li, K. Cai, P. Wang, H. Ren and G. Zhu, ACS Appl. Mater. Interfaces, 2015, 7, 201-208.
- 5. B. Li, Z. Guan, X. Yang, W. D. Wang, W. Wang, I. Hussain, K. Song, B. Tan and T. Li, *J. Mater. Chem. A*, 2014, 2, 11930-11939.
- 6. B. Li, R. Gong, W. Wang, X. Huang, W. Zhang, H. Li, C. Hu and B. Tan, *Macromolecules*, 2011, 44, 2410-2414.
- H. Ren, T. Ben, F. Sun, M. Guo, X. Jing, H. Ma, K. Cai, S. Qiu and G. Zhu, J. Mater. Chem., 2011, 21, 10348-10353.
- 8. Z. Xiang, X. Zhou, C. Zhou, S. Zhong, X. He, C. Qin and D. Cao, *J. Mater. Chem.*, 2012, 22, 22663-22669.
- 9. B. G. Hauser, O. K. Farha, J. Exley and J. T. Hupp, Chem. Mater., 2013, 25, 12-16.
- 10.J. Schmidt, M. Werner and A. Thomas, *Macromolecules*, 2009, 42, 4426-4429.
- 11.C. Zhang, L.-H. Peng, B. Li, Y. Liu, P.-C. Zhu, Z. Wang, D.-H. Zhan, B. Tan, X.-L. Yang and H.-B. Xu, *Polymer Chemistry*, 2013, 4, 3663-3666.
- 12.L. Li, H. Ren, Y. Yuan, G. Yu and G. Zhu, J. Mater. Chem. A, 2014, 2, 11091-11098.
- 13.X. Jing, D. Zou, P. Cui, H. Ren and G. Zhu, J. Mater. Chem. A, 2013, 1, 13926-13931.