Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Influence of Co-adsorbates on CO₂ Induced Phase Transition in Functionalized Pillared-Layered Metalorganic Frameworks

Andreas Schneemann, a Yukiko Takahashi, b Robin Rudolf, a Shin-ichiro Noro, b* and Roland A. Fischera, c*

^a Lehrstuhl für Anorganische Chemie II, Organometallics and Materials, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany.

^b Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan

^c Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University Munich, Lichtenbergstrasse 4, D-85748 Garching, Germany and Catalysis Research Centre, Technical University Munich, Ernst-Otto-Fischer Strasse 1, 85748 Garching, Germany

CONTENTS

S1 PXRD Patterns	3
S2 NMR Spectra	4
S3 Infrared Spectroscopy	6
S4 Thermogravimetric Analysis	7
S5 Measurement Set Up	8
S6 Depiction of the Measurement Principle	9
S7 Calculation of Selectivities for Equilibration Points 2-5	10
S8 CO ₂ /C ₃ H ₈ Coadsorption Experiments	13
S9 Physical Parameters of CO ₂ , N ₂ , CH ₄ , C ₂ H ₆ , and C ₃ H ₈	16
S10 References	17

S1 PXRD Patterns

Figure S1 shows the diffraction patterns of compounds **1-3** in the as-synthesized and dried state in a range from $2\theta = 5-30^{\circ}$.

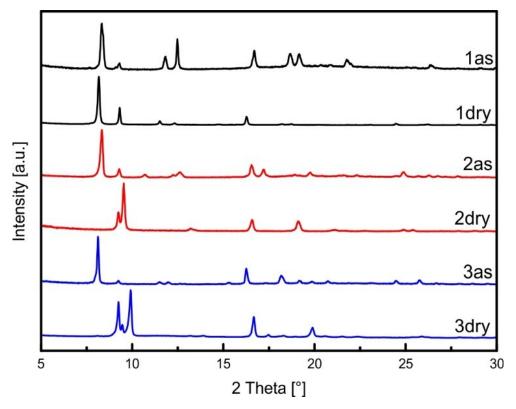


Figure S 1: PXRD patterns of compounds 1 (black), 2 (red) and 3 (blue) in the as-synthesized (as) and dried (dry) state.

S2 NMR Spectra

Liquid phase NMR spectra were performed on a Bruker Advance DPX 200 spectrometer (1H, 200 MHz) at 293 K. 1 H NMR spectra of the synthesized linker molecules were recorded in DMSO-d₆ and the spectra of digested MOFs were recorded in 0.5 ml DMSO-d₆ and 0.05 ml of DCI/D₂O (20%). Chemical shifts are given relative to TMS and were referenced to the solvent signals as internal standards.

Figures S2 – S4 show the ¹H-NMR of the MOFs **1-3** dissolved in DCI/D₂O/DMSO-d₆.

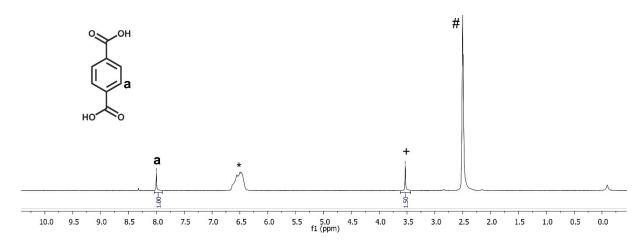


Figure S 2: NMR spectra of compound $\mathbf{1}$ ([Zn₂(bdc)₂(dabco)]_n)measured in DMSO-d₆/DCI/D₂O. Asterisk marks the DCI/D₂O peak, + the dabco peak and # the DMSO peak.

 1 H NMR (200 MHz, DMSO) δ 8.16 – 7.81 (s, 4H), 3.81 – 3.27 (s, 6H).

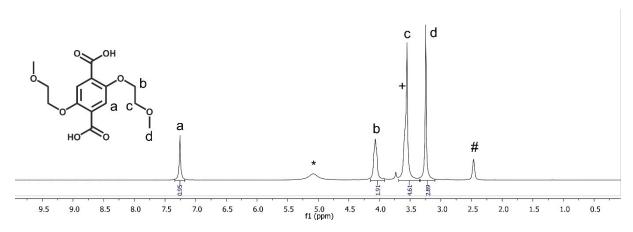


Figure S 3: NMR spectra of compound **2** ($[Zn_2(BME-bdc)_2(dabco)]_n$) measured in DMSO-d₆/DCI/D₂O. Asterisk marks the DCI/D₂O peak, + the dabco peak and # the DMSO peak.

 1 H NMR (200 MHz, DMSO) δ 7.62 – 7.09 (s, 1H), 4.44 – 3.89 (s, 1H), 3.69 – 3.41 (s, 5H), 3.44 – 3.01 (s, 3H).

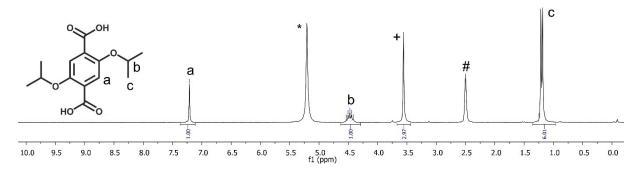


Figure S 4: NMR spectra of compound **3** ($[Zn_2(DiP-bdc)_2(dabco)]_n$) measured in DMSO-d₆/DCI/D₂O. Asterisk marks the DCI/D₂O peak, + the dabco peak and # the DMSO peak.

 1 H NMR (200 MHz, DMSO) δ 7.21 (s, 1H), 4.47 (dt, J = 11.7, 5.9 Hz, 1H), 3.56 (s, 3H), 1.22 (t, J = 6.0 Hz, 6H).

S3 Infrared Spectroscopy

Infrared spectra were recorded on a Bruker Alpha-P FT-IR situated in a glovebox. For all measurements the ATR-Mode of the spectrometer was used and measurements with 48 scans were performed.

The IR spectra of compounds **1dry**, **2dry** and **3dry** are shown in a range from 500-4000 cm⁻¹ in figure S5.

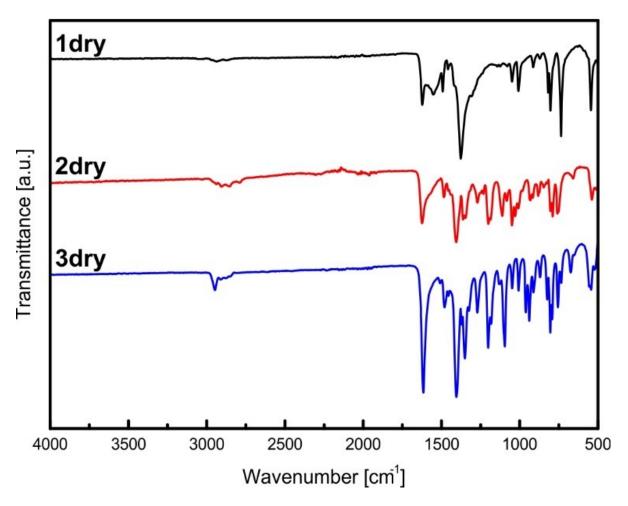


Figure S 5: Depiction of the IR Spectra of compounds 1dry (black), 2dry (red) and 3dry (blue).

S4 Thermogravimetric Analysis

All Thermogravimetric Analysis (TGs) were recorded on a Netzsch STA 409 PC TG-DSC apparatus. A Heating rate of 5 K/min was applied and the samples were placed in a pre-weighted, clean aluminiumoxide crucible. All measurements were performed in a stream of N_2 gas with constant flow rates of 20ml/min.

Figure S 6 shows the TG-traces of compounds 1-3.

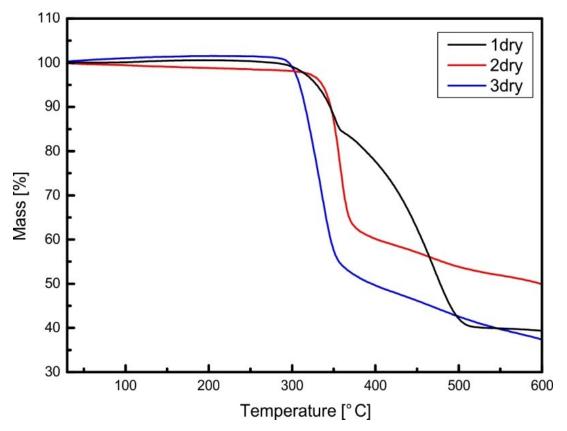


Figure S 6: TG traces of compounds 1dry (black), 2dry (red) and 3dry (blue).

S5 Measurement Set Up

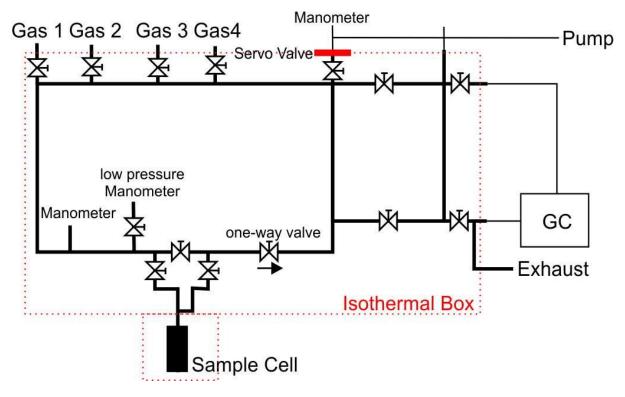


Figure S 7: Measurement set-up of the used Belsorp VC instrument

S6 Depiction of the Measurement Principle

Both gases that are used in the co-adsorption experiment are stored in separate gas bottles (a). Both components of the mixture are introduced into the manifold (b), where they are mixed (c). After both gases have been mixed sufficiently, the mixture is introduced to the MOF (d). After equilibration parts of the gas mixture are adsorbed on the framework (e). Via GC a sample is taken from the gas phase remaining over the sample (f). From the composition of the gas phase which is determined by GC, the composition of the adsorbed gas can be calculated.

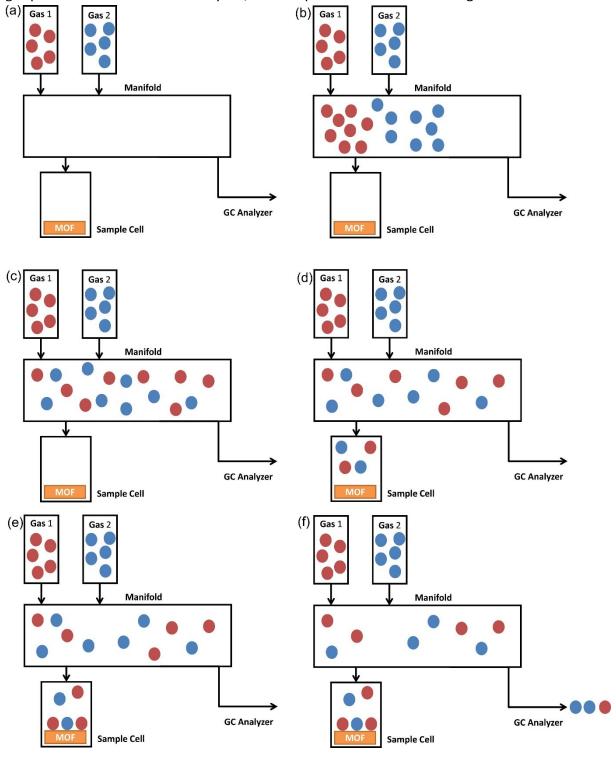


Figure S 8: Step by the depiction of the measurement principle.

S7 Calculation of Selectivities for Equilibration Points 1-5

In the following the selectivity coefficients towards CO_2 and the coadsorbate for all measurement points are given. p_e is the equilibrium pressure in kPa at which the GC was sampled.

Compound 1			Ratio	in Gas Phase	Ratio	Adsorbed	Selectivity towards		
Equilibration Point	Gas Mixture	p_{e}	CO_2	Coadsorbate	CO_2	Coadsorbate	CO_2	Coadsorbate	
1	CO_2/N_2	925.80	45.71%	54.29%	101.36%	-1.36%	-	-	
2	CO_2/N_2	896.08	45.68%	54.32%	101.96%	-1.96%	-	-	
3	CO_2/N_2	867.39	45.71%	54.29%	102.01%	-2.01%	-	-	
4	CO_2/N_2	839.72	45.75%	54.25%	102.00%	-2.00%	-	-	
5	CO_2/N_2	812.90	45.79%	54.21%	101.99%	-1.99%	-	-	

Compound 1			Rati	io in Gas Phase	Ratio	Adsorbed	Selectivity towards	
Equilibration Point	Gas Mixture	p_e	CO_2	Coadsorbate	CO_2	Coadsorbate	CO_2	Coadsorbate
1	CO ₂ /CH ₄	1323.90	52.02%	47.98%	14.02%	85.98%	0.15	6.65
2	CO ₂ /CH ₄	1282.02	52.00%	48.00%	14.33%	85.67%	0.15	6.48
3	CO ₂ /CH ₄	1242.35	51.97%	48.03%	14.51%	85.49%	0.16	6.38
4	CO ₂ /CH ₄	1202.85	51.95%	48.05%	14.94%	85.06%	0.16	6.16
5	CO ₂ /CH ₄	1164.35	51.92%	48.08%	15.49%	84.51%	0.17	5.89

Compound 2	•			o in Gas Phase	Ratio	Adsorbed	Select	ivity towards:
Equilibration Point	Gas Mixture	p_e	CO_2	Coadsorbate	CO_2	Coadsorbate	CO_2	Coadsorbate
1	CO_2/N_2	1975.71	49.48%	50.52%	141.46%	-41.46%	-	-
2	CO_2/N_2	1912.93	49.47%	50.53%	139.00%	-39.00%	-	-
3	CO_2/N_2	1852.35	49.46%	50.54%	138.61%	-38.61%	-	-
4	CO_2/N_2	1792.91	49.45%	50.55%	134.96%	-34.96%	-	-
5	CO_2/N_2	1735.52	49.45%	50.55%	132.35%	-32.35%	-	-

Compound 2			Ratio	in Gas Phase	Ratio A	Adsorbed	Selectiv	vity towards:
Equilibration Point	Gas Mixture	p_e	CO_2	Coadsorbate	CO_2	Coadsorbate	CO_2	Coadsorbate
1	CO_2/N_2	2467.88	60.33%	39.67%	142.49%	-42.49%	-	-
2	CO_2/N_2	2392.05	60.32%	39.68%	137.13%	-37.13%	-	-
3	CO_2/N_2	2318.63	60.31%	39.69%	134.40%	-34.40%	-	-
4	CO_2/N_2	2246.85	60.30%	39.70%	130.71%	-30.71%	-	-
5	CO_2/N_2	2177.51	60.29%	39.71%	129.46%	-29.46%	-	-

Compound 3			Ratio	in Gas Phase	Ratio A	Adsorbed	Selecti	ivity towards:
Equilibration Point	Gas Mixture	p_e	CO_2	Coadsorbate	CO_2	Coadsorbate	CO_2	Coadsorbate
1	CO_2/N_2	1328.59	47.02%	52.98%	100.40%	-0.40%	-	-
2	CO_2/N_2	1285.32	46.95%	53.05%	101.20%	-1.20%	-	-
3	CO_2/N_2	1243.33	46.89%	53.11%	101.82%	-1.82%	-	-
4	CO_2/N_2	1202.99	46.86%	53.14%	102.19%	-2.19%	-	-
5	CO_2/N_2	1164.03	46.84%	53.16%	102.44%	-2.44%	-	-

Compound 3			Ratio i	in Gas Phase	Ratio A	dsorbed	Select	tivity towards
Equilibration Point	Gas Mixture	p_e	CO_2	Coadsorbate	CO_2	Coadsorbate	CO_2	Coadsorbate
1	CO_2/N_2	1347.56	21.56%	78.44%	117.68%	-17.68%	-	-
2	CO_2/N_2	1302.88	21.54%	78.46%	114.20%	-14.20%	-	-
3	CO_2/N_2	1259.97	21.54%	78.46%	112.85%	-12.85%	-	-
4	CO_2/N_2	1218.12	21.54%	78.46%	108.59%	-8.59%	-	-
5	CO ₂ /N ₂	1177.80	21.55%	78.45%	104.20%	-4.20%	-	-

Compound 3			Ratio	in Gas Phase	Ratio A	Adsorbed	Selectivity towards	
Equilibration Point	Gas Mixture	p_e	CO_2	Coadsorbate	CO_2	Coadsorbate	CO_2	Coadsorbate
1	CO ₂ /CH ₄	1323.98	51.95%	48.05%	15.61%	84.39%	0.17	5.85
2	CO ₂ /CH ₄	1281.48	52.01%	47.99%	14.89%	85.11%	0.16	6.19
3	CO ₂ /CH ₄	1240.65	52.02%	47.98%	14.72%	85.28%	0.16	6.28
4	CO ₂ /CH ₄	1201.09	52.03%	47.97%	14.67%	85.33%	0.16	6.31
5	CO ₂ /CH ₄	1163.00	52.03%	47.97%	14.61%	85.39%	0.16	6.34

Compound 3			Rati	o in Gas Phase	Ratio A	Adsorbed	Selecti	vity towards
Equilibration Point	Gas Mixture	p_e	CO_2	Coadsorbate	CO_2	Coadsorbate	CO_2	Coadsorbate
1	CO ₂ /CH ₄	1167.08	23.69%	76.31%	78.51%	21.49%	11.77	0.08
2	CO ₂ /CH ₄	1128.89	23.67%	76.33%	78.14%	21.86%	11.52	0.09
3	CO ₂ /CH ₄	1092.21	23.65%	76.35%	78.45%	21.55%	11.75	0.09
4	CO ₂ /CH ₄	1056.44	23.64%	76.36%	78.10%	21.90%	11.52	0.09
5	CO ₂ /CH ₄	1022.42	23.64%	76.36%	78.14%	21.86%	11.55	0.09

Compound 3			Ratio	in Gas Phase	Ratio	Adsorbed	Selec	ctivity towards
Equilibration Point	Gas Mixture	p_e	CO_2	Coadsorbate	CO_2	Coadsorbate	CO_2	Coadsorbate
1	CO_2/C_2H_6	336.52	73.84%	26.16%	67.89%	32.11%	0.75	1.33
2	CO_2/C_2H_6	325.20	73.96%	26.04%	66.91%	33.09%	0.71	1.40
3	CO_2/C_2H_6	314.56	74.10%	25.90%	65.74%	34.26%	0.67	1.49
4	CO_2/C_2H_6	304.53	74.37%	25.63%	63.50%	36.50%	0.60	1.67
5	CO_2/C_2H_6	294.69	74.35%	25.65%	63.64%	36.36%	0.60	1.66

Compound 3			Ratio	in Gas Phase	Ratio	Adsorbed	Select	ivity towards:
Equilibration Point	Gas Mixture	p_e	CO_2	Coadsorbate	CO_2	Coadsorbate	CO_2	Coadsorbate
1	CO_2/C_2H_6	511.79	47.64%	52.36%	48.20%	51.80%	1.02	0.98
2	CO_2/C_2H_6	495.16	47.82%	52.18%	46.80%	53.20%	0.96	1.04
3	CO_2/C_2H_6	479.67	48.00%	52.00%	45.36%	54.64%	0.90	1.11
4	CO_2/C_2H_6	464.57	48.15%	51.85%	44.18%	55.82%	0.85	1.17
5	CO_2/C_2H_6	449.98	48.28%	51.72%	43.24%	56.76%	0.82	1.23

Compound 3			Ratio	in Gas Phase	Ratio	Adsorbed	Selectivity towards:	
Equilibration Point	Gas Mixture	p_e	CO_2	Coadsorbate	CO_2	Coadsorbate	CO_2	Coadsorbate
1	CO_2/C_2H_6	630.01	86.62%	14.40%	86.08%	13.92%	1.03	0.97
2	CO_2/C_2H_6	609.47	86.72%	14.26%	86.20%	13.80%	1.03	0.97
3	CO_2/C_2H_6	590.09	86.80%	14.14%	86.30%	13.70%	1.03	0.97
4	CO_2/C_2H_6	571.48	86.88%	14.02%	86.40%	13.60%	1.03	0.98
5	CO_2/C_2H_6	553.24	86.95%	13.91%	86.49%	13.51%	1.02	0.98

Compound 3			Ratio in Gas Phase		Ratio Adsorbed		Selectivity towards	
Equilibration Point	Gas Mixture	p_e	CO_2	Coadsorbate	CO_2	Coadsorbate	CO_2	Coadsorbate
1	CO_2/C_3H_8	286.63	98.01%	1.99%	87.17%	12.83%	0.14	7.25
2	CO_2/C_3H_8	276.95	98.05%	1.95%	86.89%	13.11%	0.13	7.57
3	CO_2/C_3H_8	267.63	98.09%	1.91%	86.45%	13.55%	0.12	8.06
4	CO_2/C_3H_8	258.89	98.13%	1.87%	85.95%	14.05%	0.12	8.60
5	CO_2/C_3H_8	250.49	98.17%	1.83%	85.49%	14.51%	0.11	9.10

Compound 3			Ratio	in Gas Phase	Ratio Adsorbed		Selectivity towards:	
Equilibration Point	Gas Mixture	p_e	CO_2	Coadsorbate	CO_2	Coadsorbate	CO_2	Coadsorbate
1	CO_2/C_3H_8	299.25	92.45%	7.55%	77.59%	22.41%	0.28	3.54
2	CO_2/C_3H_8	289.08	92.56%	7.44%	76.75%	23.25%	0.27	3.77
3	CO_2/C_3H_8	279.20	92.76%	7.24%	75.22%	24.78%	0.24	4.22
4	CO_2/C_3H_8	270.07	92.96%	7.04%	73.58%	26.42%	0.21	4.74
5	CO_2/C_3H_8	261.36	93.18%	6.82%	71.64%	28.36%	0.18	5.41

Compound 3	Compound 3		Rati	Ratio in Gas Phase		Ratio Adsorbed		Selectivity towards:	
Equilibration Point	Gas Mixture	p_e	CO_2	Coadsorbate	CO_2	Coadsorbate	CO_2	Coadsorbate	
1	CO_2/C_3H_8	540.17	98.76%	1.24%	98.35%	1.65%	0.75	1.33	
2	CO_2/C_3H_8	522.77	98.78%	1.22%	98.23%	1.77%	0.69	1.46	
3	CO_2/C_3H_8	506.03	98.80%	1.20%	98.06%	1.94%	0.61	1.63	
4	CO_2/C_3H_8	489.93	98.83%	1.17%	97.85%	2.15%	0.54	1.86	
5	CO_2/C_3H_8	474.36	98.86%	1.14%	97.62%	2.38%	0.47	2.11	

Compound 3			Rati	o in Gas Phase	Ratio Adsorbed		Selectivity towards	
Equilibration Point	Gas Mixture	p_e	CO_2	Coadsorbate	CO_2	Coadsorbate	CO_2	Coadsorbate
1	CO_2/C_3H_8	568.01	95.35%	4.65%	94.35%	5.65%	0.81	1.23
2	CO_2/C_3H_8	549.76	95.41%	4.59%	93.79%	6.21%	0.73	1.38
3	CO_2/C_3H_8	532.24	95.49%	4.51%	93.12%	6.88%	0.64	1.56
4	CO_2/C_3H_8	515.44	95.62%	4.38%	92.00%	8.00%	0.53	1.90
5	CO_2/C_3H_8	499.18	95.71%	4.29%	91.31%	8.69%	0.47	2.12

S8 CO₂/C₃H₈ Coadsorption Experiments

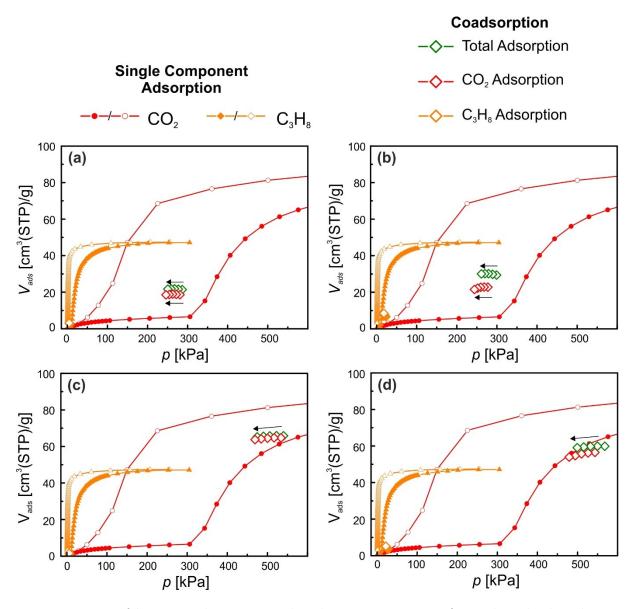


Figure S 9: Depiction of the excess single component and co-adsorption measurements of material $\bf 3$. Red circles and orange triangles represent CO_2 and C_3H_8 single component adsorption isotherms. CO_2 and C_3H_8 fractions of the co-adsorption experiments are shown in red and orange, respectively. Total adsorption is shown in green.

The last set of experiments was conducted for gas mixtures containing CO_2/C_3H_8 ratios of 281:6 kPa, 277:23 kPa, 534:6 kPa and 544: 27 kPa (Figure S9 (a-d)). The observations made are similar to the ones found for the CO_2/C_2H_6 mixtures. Due to the relatively low phase transition pressure and operating pressures of C_3H_8 , the scale of the graph was decreased and the isotherms are only shown from 0 to 600 kPa. During the first measurement shown in Figure S9(a), both partial pressures are lower than the respective phase transition pressures. Again, a cooperative effect of the two gases is observed and the uptakes are increased to 18.6 and 2.74 cm³(STP)/g for CO_2 and C_3H_8 respectively as compared to 6.5 and 1.4 cm³(STP)/g during single component adsorption. When the partial C_3H_8 pressure is increased to exceed the threshold pressure of the $np \rightarrow lp$ transition (Figure S9(b)), an even more striking uptake of CO_2 is achieved amounting to 22.81 cm³(STP)/g. In contrast, the C_3H_8 adsorption is even lower than the values determined from the single component adsorption isotherm at similar C_3H_8 pressures (6.6 cm³(STP)/g at

the first equilibration step, compared to 25.1 (STP)/g during single component adsorption at similar pressures). If the partial CO₂ pressure surpasses the threshold pressure of the phase transition (Figure S9(c)), it can be observed that the uptake of the CO₂ portion of the mixture is comaparbly high as for the single component adsorption at this pressure (64.7 cm³(STP)/g). For the C₃H₈ molecules an uptake in line with the single component isotherms is recorded at this pressure (1.1 cm³(STP)/g compared to 1.4 cm³(STP)/g during single component adsorption). In the last measurement (Figure S9(d)), both partial pressures are above the gate opening pressure, which leads to uptakes of 56.5 cm 3 (STP)/g for CO $_2$ and 3.4 cm 3 (STP)/g for C $_3$ H $_8$. The value for CO₂ is close to the uptake found for single component adsorption at the respective pressure, the C₃H₈ value on the other hand, is substantially lower than for the single component adsorption (30.2 cm³(STP)/g at similar pressures). It seems as if the cooperative effect found for this gas mixture is not as strong as in the case of CO₂/C₂H₆. C₃H₈ is barely co-adsorbed, after the phase transition is initiated by CO₂. When the C₃H₈ pressure is above the respective phase transition pressure, also much lower uptakes are found than in the single component cases. This might either be due to the sterical bulk of the adsorbate (good adsorption sites less accesible) or the much lower adsorption affinity of the framework towards C₃H₈ compared to CO_2 .

A depiction of CO_2/C_3H_8 in a range from 0-100 kPa to clarify the C_3H_8 uptakes at low pressures is shown in Figure S 10.

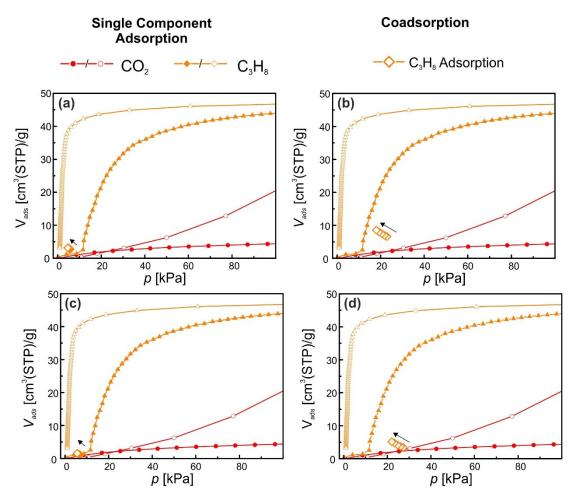


Figure S 10: Depiction of the excess single component and co-adsorption measurements of material $\bf 3$, depicted in a range from 0 - 100 kPa. Red circles and orange triangles represent CO_2 and C_3H_8 single component adsorption isotherms. CO_2 and C_3H_8 fractions of the co-adsorption experiments are shown in red and orange, respectively. Total adsorption is shown in green.

In the following the selectivity coefficients for the CO_2/C_3H_8 coadsorption measurements are listed for the first pressure point.

 $Table \ 1: Selectivity \ coefficients \ calculated \ from \ the \ molar \ fractions \ of \ the \ binary \ mixture \ in \ the \ gas \ phase \ and \ adsorbed. \ {\it adsorbed}$

				Molar l	Fraction Gas Phase	Molar Fraction Adsorbed		_	
Figure	Material	Gas Mixture	pe ^b / kPa	CO ₂	Coadsorbate	CO_2	Coadsorbate	Selectivity (CO2)	Selectivity (Coadsorbate)
S 9(a)	3	CO ₂ /C ₃ H ₈	286.63	0.98	0.02	0.87	0.13	0.14	7.32
S 9(b)	3	CO_2/C_3H_8	299.25	0.92	0.08	0.78	0.22	0.31	3.24
S 9(c)	3	CO_2/C_3H_8	540.17	0.99	0.01	0.98	0.02	0.49	2.02
S 9(d)	3	CO_2/C_3H_8	568.01	0.96	0.04	0.91	0.09	0.42	2.37

 $^{^{\}it o}$ data is from 1st equilibrium point. $^{\it b}$ equilibration pressure of the gas mixture.

S9 Physical Parameters of CO_2 , N_2 , CH_4 , C_2H_6 , and C_3H_8

 $Table S1: Summary of the kinetic diameter, polarizability and quadrupole moment of CO_2, N_2, CH_4, C_2H_6 \ and \ C_3H_8. \\^1$

Adsorbates	Sum Formula	Kinetic Diameter	Polarizability	Quadrupole Moment
Carbon dioxide	CO ₂	3.3 Å	29.11 × 10 ²⁵ /cm ³	4.30 × 10 ²⁶ /esu cm ²
Nitrogen	N_2	3.64 Å	17.403×10^{25} /cm ³	1.52 × 10 ²⁶ /esu cm ²
Methane	CH ₄	3.758 Å	25.93×10^{25} /cm ³	0
Ethane	C_2H_6	4.443 Å	$44.3-44.7 \times 10^{25}$ /cm ³	0.65×10^{26} /esu cm ²
Propane	C_3H_8	5.118 Å	62.9-63.7 × 10 ²⁵ /cm ³	-

S10 References

(1) Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. *Chem. Soc. Rev.* **2009**, *38*, 1477.