Journal Name

ARTICLE

Electronic Supplementary Information

Titanium dioxide nanotrees for high capacity lithium-ion microbattery

Wei Wen,^{a,b}* Jin-Ming Wu,^b* Yin-Zhu Jiang,^b Jun-Qiang Bai^b and Lu-Lu Lai^b

^aCollege of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, P. R. China.

^bState Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang

University, Hangzhou 310027, P. R. China.

Fig. S1 XRD pattern of the TiO₂ film derived by direct oxidation of Ti foil in air at 550 °C for 3 h.

Fig. S2 XRD pattern of TiO₂ nanobelt arrays on the Ti foil.

Fig. S3 The TiO₂ nanotrees derived via depositing branches on nanowire arrays calcined at 450 $^{\circ}$ C for 1 h (a) and 550 $^{\circ}$ C for 3 h (b). Herein a much diluted precursor solution (1/8 of the original concentration) was used to grow the branches. The deposition of the branches were conducted at 80 $^{\circ}$ C for 4.5 h. The coverage of the TiO₂ nanobelts was dependent of the crystallinity on the nanowire trunk.

Fig. S4 Characterizations of TiO_2 nanotrees after rate perfromance tests: (a) SEM image and (b) Raman spectroscopy.