Supporting information

Homologous V₂O₃/C box-in-box and V₂O₅ box for lithium-ion full cells

Xue Liu, Yanjie Hu, Guiqi Jia, Haoxuan Zhang, Hao Jiang*, Chunzhong Li*

Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and

Engineering, East China University of Science and Technology, Shanghai 200237, China

*Corresponding author: Tel.: +86-21-64250949, Fax: +86-21-64250624

E-mail: jianghao@ecust.edu.cn (Prof. H. Jiang) and czli@ecust.edu.cn (Prof. C. Z. Li)

1. Experimental Section

Synthesis of V_2O_3 *NPs.* The VO_x precursors were firstly synthesized according to Balkus' work with a minor revision.¹ In a tipical synthesis, 0.3 g of ammonium metavanadate and 0.5 g of P123 (EO₂₀P₇₀E₂₀) were dispersed into 30 mL of deionized water containing 2 mL of 1 M HNO₃ under stirring for 7 h at room temperature, and then transferred into an autoclave and maintained at 200 °C for 12 h. Finally, the V₂O₃ NPs can be obtained by treating as-obtained hydrothermal products at 600 °C for 10 h in argon.

Synthesis of V_2O_3 *HNSs.* The synthesis of V_2O_3 HNSs was according to Lou's work with a minor revision.² In a tipical synthesis, 3 mL of 0.33 M VOC₂O₄ and 30 mL of isopropanol were mixed in a 50 mL autoclave under stirring for 1 h and then heated at 200 °C for 10 h. The V_2O_3 HNSs can be obtained by annealing the precursor in argon at 600 °C for 10 h.

2. Figures

Figure S1. TEM image of the carbon box-in-box.

Figure S2. XRD pattern of the V₂O₃/C box-in-box.

Figure S3. TGA curves of V_2O_3/C box-in-box and V_2O_3 NPs.

Figure S4. (a) Raman spectrum and (b) N₂ adsorption-desorption isotherms of the V₂O₃/C box-in-box (the insert of part b shows the corresponding pore-size distribution curve).

Figure S5. (a) CV curves at 0.2 mV s⁻¹, (b) charge-discharge curves at 100 mA g⁻¹ of the V_2O_3/C box-in-box for the initial 3 cycles.

Figure S6. Rate performance of the pure carbon box electrodes.

Figure S7. (a) SEM image of V₂O₃ NPs, (b) SEM image of V₂O₃ HNSs (the inset showing the corresponding TEM image), (c) XRD patterns of V₂O₃ HNSs (red line) and V₂O₃ NPs (blue line).

Figure S8. High-resolution V2p XPS spectra of the V₂O₃/C box-in-box (a) before cycling and (b) after cycling.

Figure S9. SEM images of the V_2O_3/C electrode (a) before cycles and (b) after cycles.

Figure S10. XRD pattern of the V_2O_5 box.

Figure S11. Charge-discharge curves at 100 mA g⁻¹ of the full cell for the initial 3 cycles.

3. Table

Cathode	Anode	Rate capability	Cycling behavior	Ref.
Ni _{1/3} Mn _{1/3} Co _{1/3} O ₂	Si/RGO	-	77 mAh g ⁻¹ (70%) 1/4C for 15 cycles	S3
LiMn ₂ O ₄	MnO _x /C	85 mAh g ⁻¹ (0.2C) 25 mAh g ⁻¹ (5C)	-	S4
LiCoPO ₄	$Li_4Ti_5O_{12}$	-	93 mAh g ⁻¹ (76%) 0.1 C for 20 cycles	S5
$LiNi_{0.5}Mn_{1.5}O_4$	CuO-MCMB	125 mAh g ⁻¹ (1C) 95 mAh g ⁻¹ (5C)	-	S6
$LiMn_2O_4$	Mn_2O_3	-	80 mAh g ⁻¹ (81%) 1C for 40 cycles	S7
LiMn ₂ O ₄	TNSTs	100 mAh g ⁻¹ (0.2 A g ⁻¹) 58 mAh g ⁻¹ (1.6 A g ⁻¹)	-	S 8
V ₂ O ₅	V ₂ O ₃ /C	130 mAh g ⁻¹ (2/3 C) 43 mAh g ⁻¹ (33 C)	81 mAh g ⁻¹ (80%) 3.3 C for 100 cycles	This work

Table S1. A summary table for recent reports on lithium-ion full cells.

The specific capacities of all those full cells shown in the table are based on the cathode material weight. For this work, $1 \text{ C}=0.15 \text{ A g}^{-1}$.

4. References

- 1 C. Xiong, A. E. Aliev, B. Gnade, Jr. K. J. Balkus, ACS Nano 2008, 2, 293.
- 2 A. Pan, H. B. Wu, L. Yu, X. W. Lou, Angew. Chem. 2013, 52, 2226.
- 3 L. Ji, H. Zheng, A. Ismach, Z. Tan, S. Xun, E. Lin, V. Battaglia, V. Srinivasan, Y. Zhang, Nano Energy 2011, 1, 164.
- 4 C. Chae, H. Park, D. Kim, J. Kim, E. S. Oh, J. K. Lee, J. Power Sources 2013, 244, 214.
- 5 J. Ni, W. Liu, J. Liu, L. Gao, J. Chen, Electrochem. Commun. 2013, 35, 1.
- 6 R. Verrelli, J. Hassoun, A. Farkas, T. Jacob, B. Scrosati, J. Mater. Chem. A 2013, 1, 15329.
- 7 Y. Wang, Y. Wang, D. Jia, Z. Peng, Y. Xia, G. Zheng, Nano Lett. 2014, 14, 1080.
- 8 H. Ming, P. Kumar, W. Yang, Y. Fu, J. Ming, W. J. Kwak, L. J. Li, Y. K. Sun, V. Zheng, ACS Sustainable Chem. Eng. 2015, 3, 3086.