Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Building Thermal-stable Li-ion Batteries Using a Temperature-responsive Cathode

Weixiao Ji¹, Feng Wang¹, Daotan Liu³, Jiangfeng Qian¹, Yuliang Cao¹, Zhongxue Chen²♥, Hanxi Yang¹, Xinping Ai¹♥

¹College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China.

²School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.

³China Electric Power Research Institute, Beijing 100192, China.

*e-mail: xpai@whu.edu.cn ; zxchen_pmc@whu.edu.cn

Polymer	Dopant	Transition temperature (\degree C)	PTC intensity (orders of magnitude)	Processability at 25 ° C	Solubility in electrolyte solvents at 25 ° C
РЗНРу	FeCl ₃	90 -120	4	easy	soluble
PTH	HCIO ₄	160 -170	3	difficult	insoluble
P3MT	HCIO ₄	160 -170	4	difficult	insoluble
P3BT	Cu(ClO ₄) ₂	130 -140	3	easy	insoluble
P3OT	Cu(ClO ₄) ₂	90 -110	3	easy	insoluble
P3DT	Cu(ClO ₄) ₂	80 -100	4	easy	slightly soluble
PEDOT	HCIO ₄	> 220	2	difficult	insoluble

Table S1. A comparison for the properties of various conducting polymers

Fig.S1 Thermal de-doping behaviors of p-doped P3OT polymer: a) FT-IR spectra of ClO_4^- anions-doped P3OT polymer before and after thermal treatment at 90 °C. b) the time dependence of the open-circuit potential for an electrochemically p-doped P3OT electrode at 90 °C. c) CV curves obtained from P3OT-coated Pt microelectrode in $1M \text{ LiPF}_6/\text{EC+DMC+EMC}$ electrolyte at a scan rate of 10 mV s⁻¹ at various temperatures.

Fig.S2 Thermal and electrochemical stability of P3OT polymer: a) DSC curves of P3OT polymer in a temperature range of $80 - 300^{\circ}$ C at a scan rate of 10 °C min⁻¹ under N₂ atmosphere. b) CV curves obtained from P3OT-coated Pt microelectrode in 1M LiPF₆/EC+DMC+EMC electrolyte at a scan rate of 10 mV s⁻¹ at room temperature.

Fig.S3. Structural and chemical stability characterization for P3OT layer under the presence of liquid electrolyte. a) FT-IR spectra and b) the cross-sectional SEM images of P3OT layer before and after soaking in 1M LiPF₆/EC+DMC+EMC electrolyte solution for a week at 25 °C and 60 °C, respectively.

Fig.S4. The photo illustration for the interfacial adhesion measurements.

	PTC layer toward Al substrate	LCO layer toward Al substrate	LCO layer toward PTC layer
Adhesion force (N cm ⁻²)	> 38.3	27.3	27.1
The corresponding electrode	Al/P3OTelectrode	Al/LCO electrode	AI/P3OT/LCO electrode

Table S2. Results of interfacial adhesion tests

Fig.S5. DC conductivity and the rate capability tests: a) The DC conductivities of bare LCO electrode and LCO-PTC electrode after fully charged, the inset shows the color changes of P3OT electrode before and after electrochemical p-doping. b) Rate performance of pouch full cells with the LCO-PTC and conventional LCO cathode at 25 °C.