Electronic Supplementary Information

Deprotonation of $g-C_3N_4$ with Na ions for efficient nonsacrificial water splitting under visible light

Feng Guo,^a Jingling Chen,^a Minwei Zhang,^b Bifen Gao^a, Bizhou Lin^a and Yilin Chen^{a*}

^a Key Laboratory for Functional Materials of Fujian Higher Education, College of Materials Science

and Engineering, Huaqiao University, Xiamen 361021, P. R. China.

^bDepartment of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby Denmark.

Experimental Section

1. Materials

Melamine (+99 %), *o*-tolidine (98 %), Nafion (D-520, 5 vol.%) and chloroplatinic acid hexahydrate $(H_2PtCl_6 \cdot 6H_2O) \ge 37.5$ % Pt basis) were purchased from Alfa Aesar. Sodium chloride (99.5 %), sodium sulfate (99 %), silver nitrate (99.99 %), triethanolamine (+99.5 %), N,N-dimethylformamide (+99.9 %) and hydrogen peroxide (30 vol.%) were purchased from Sinopharm Chemical Reagent Co. (Shanghai, China). All the reagents were used as received without further purification.

2. Synthesis of g-C₃N₄ and deprotonated g-C₃N₄

Pure g-C₃N₄ was prepared by heating 2 g melamine at 823 K for 4 h under flowing argon gas (99.99%, 50 mL min⁻¹) with a ramp rate of 2 °C min⁻¹, followed by naturally cooling to room temperature under argon gas. A light-yellow powder of $g-C_3N_4$ was finally obtained with a yield of about 0.834 g. A typical synthesis of deprotonated g-C₃N₄ is shown as follows: 1 g melamine mixed with 10 sodium chloride ground planetary ball mill (QM-3SP04, g was in Nanjing University Instrument Co.) at 400 rpm for 48 h. Then, the mixture was pressed into small

^{*} Corresponding author. Fax: +86-592-6162221; E-mail address: ylchen@hqu.edu.cn.

tablets in order to ensure the interactions between the precursors in the thermal treatment. The tablets were transferred into a quartz tube and heated by the thermal processes identical to the pure g-C₃N₄. A bright-yellow powder of Na-CN was finally obtained with a yield of about 0.629 g. The resultant was ground and washed with deionized water by several cycles of centrifugal separation/washing/redispersion until the chloride ion concentration in the filtrate is negligible, checked by AgNO₃ test. The product (denoted as Na-CN) was then dried at 383 K for 12 h and finally kept in a darkened vacuum desiccator. The other deprotonated catalysts prepared by the melamine/sodium chloride in the weight ratios of 1 : 5, 2 : 15 and 2 : 25 were denoted as Na-CN-1, Na-CN-2, and Na-CN-3, respectively.

3. Characterization

X-ray powder diffraction (XRD) measurements were carried out with Cu K α radiation (λ = 1.5418 Å) on a Rigaku D/MAX-RB diffractometer. Transmission electron microscopy (TEM) images were acquired using a FEI Tecnai G2 T20. X-ray photoelectron spectroscopy (XPS) was recorded on an ESCALAB 250 photoelectron spectrometer (Thermo Fisher Scientific Inc.) at 3.0 × 10⁻¹⁰ mbar with monochromatic Al K α radiation (E = 1486.2 eV). All binding energies were referenced to the C 1s peak (284.6 eV) arising from the adventitious carbon. The Brunauer–Emmett–Teller (BET) surface area was determined by N₂ adsorption measurement using a Quantochrome autosorb iQ instrument at 77 K. All the samples were degassed at 473 K for 3 h before the measurement. UV-vis diffuse reflectance spectra (DRS) were measured on an UV-vis spectrometer equipped with an integrating sphere diffuse reflectance accessory (Shimadzu 2550). Photoluminescence spectroscopy (PL) was conducted by an Edinburgh FLS-920 spectrometer at room temperature.

4. Electrochemical measurement

Measurements were performed on an electrochemical analyzer (CHI660E Instruments) with a standard three-electrode cell using a Ag/AgCl electrode (3 M KCl) and a Pt plate as reference electrode and counter electrode, respectively. The electrolyte was 0.2 M Na₂SO₄ aqueous solution (pH=7) and was purged with nitrogen gas for 2 h prior to the measurements. The pulse visible light was generated by a CEL-HXF 300 W xenon lamp with a 420 nm cut-off filter and chopped with an optical chopper (Stanford SR540). The working electrode was prepared was as follows: 50 mg of sample was dissolved in 5 mL N,N-dimethylformamide (DMF) under sonication for 1 h to get a slurry. The slurry was cautiously spread onto glassy carbon electrode (diameter 5 mm), and was irradiated by IR light for 3 h to evaporate the solvent and improve adhesion. Then, Nafion aqueous solution (0.05 %, 10 μ L) was droped onto the resulting electrode and air-dried for 1 h at ambient temperature. The coated area of the electrode was about 0.20 cm².

5. Photocatalytic test

Photocatalytic H₂ and O₂ production was performed in a Pyrex top-irradiation vessel connected to a glass-closed gas circulation and evacuation system. The specific procedure was as follows: 100 mg well-ground catalyst powder was dispersed in an aqueous solution (100 mL) containing a small amount of H₂PtCl₆ as the co-catalyst. In the case of deposition of Pt, the loading of 1.0 wt.% Pt cocatalyst on sample was performed by an in-situ photodeposition method. Before photocatalytic experiments, the reactant solution was evacuated for 30 min to ensure the anaerobic conditions. The CEL-HXF 300 W xenon lamp with a 420 nm cutoff filter was used again as the light source. A flow of cooling water was used to maintain the temperature of the reactant solution at 278 K. The evolved gases were analyzed by an online 7890 II gas chromatography equipped with a thermal conductive detector (TCD, argon as the carrier gas).

6. Quantum efficiency (QE) and solar to hydrogen (STH) conversion efficiency calculations

3

6.1 Quantum efficiency calculation

The calculation of apparent quantum yield (AQY) was determinated by using the following fomula:

AQY = (2 × the number of evolved H₂ molecules / the number of incident photons) × 100% In a typical measurement, a CEL-HXF 300 W Xe lamp with a band-pass filter (420 ± 15 nm) and a emission area of 25.5 cm² served as the light source. The integrated light intensity was 5.9 mW cm⁻² tested by an FZ-A spectroradiometer. The number of incident photons was calculated to be 1.14 × 10²¹, using the following equation:

$$N = E \lambda / h c = (5.9 \times 10^{-3} \times 25.5 \times 3600 \times 420 \times 10^{-9}) / (6.626 \times 10^{-34} \times 3.0 \times 10^{8}) = 1.14 \times 10^{21}$$

The average H_2 evolution rate on the deprotonated g-C₃N₄ was 13.7 µmol h⁻¹, determined after 5h photocatalytic test without an additional sacrificial reagent. Therefore, the AQY can be estimated as:

AQY = $[(2 \times 6.02 \times 10^{23} \times 13.7 \times 10^{-6}) / 1.14 \times 10^{21}] \times 100\% = 1.45\%$

6.2 Solar to hydrogen (STH) conversion efficiency calculation

The calculation of STH conversion efficiency under simulated solar irradiation (AM 1.5G) was determinated by using the following fomula:

$$STH = E_W / E_{Solar}$$

The energy generated by nonsacrificial water splitting (E_w) was 68 J, when 285.5 µmol H₂ was detected after 8h of photocatalytic reaction, using the following equation:

 $E_{W} = 285.5 \times 10^{-6} \times 6.02 \times 10^{23} \times 2.46 \times 1.609 \times 10^{-19} = 68$

2.46 eV is the free energy of water splitting.

After 8 h of illumination, the total incident power over the 25.5 cm² irradiation area was 0.83

W, so that the total input energy (E_{Solar}) was 2.39 \times 10⁴ J using the following equation:

 $E_{Solar} = 0.83 \times 8 \times 3600 = 2.39 \times 10^4$

So the STH of Na-CN was determined to be:

STH = 68 / $2.39 \times 10^4 = 0.28$ %

Similarly, the STH of g-C₃N₄ was calculated to be 0.01 %, since 9.1 μ mol H₂ was detected after 8h of nonsacrificial photocatalytic reaction.

7. H₂O₂ detection

The concentration of hydrogen peroxide (H_2O_2) in reaction solution was detected with a peroxide indicator, *o*-tolidine. Typically, 1.0 mL of reaction suspension was taken immediately after the reaction. The solution then centrifuged at 12000 rpm for 10 minutes to remove the catalyst. a 2.0 mL detection reagent of 1.0 % *o*-tolidine in 0.1M HCl was added to the centrifugal clear liquid to monitor the production of H_2O_2 by measuring the absorption peak at 438 nm using UV-vis spectroscopy.

Fig. S1 The data plotted as transformed K–M function versus energy of light absorbed.

Fig. S2 Transient photocurrent at 0.40 V (vs. RHE) under chopped illumination (λ > 420 nm).

Fig. S3 Photocatalytic nonsacrificial water splitting over 1.0 wt.% Pt-deposited $g-C_3N_4$ at different

pH under visible light irradiation (λ > 420 nm).

Fig. S4 (a) A time course of chromogenic reaction between H_2O_2 (2 mmol L⁻¹, 1.0 mL) and *o*-tolidine (1.0 %, 2.0 mL) at ambient temperature. The absorption intensity at 438 nm reaches the maximum after 45 min reaction. So all the data for the following chromogenic reaction were collected after the mixing for 45 min. (b) Detection of H_2O_2 in the nonsacrificial g-C₃N₄ reaction suspension at different pH. (c) A time course of H_2O_2 decomposition on 1.0 wt.% Pt-deposited Na-CN under visible light irradiation (λ > 420 nm). In this experiment, 1.0 mL H_2O_2 (2 mmol L⁻¹) was added into the suspension (100 mg catalyst dispersed in 100 mL aqueous solution), and was degassed like the aforementioned photocatalytic test.

Fig. S5 Photocatalytic H₂ evolution over different catalysts deposited by 1.0 wt.% Pt in the presence of TEA under visible light irradiation ($\lambda > 420$ nm). The average H₂-evolution rates over g-C₃N₄, Na-CN, Na-CN-1, Na-CN-2 and Na-CN-3 are 10.5, 181.5, 93.8, 125.7 and 162.1 µmol h⁻¹, respectively.

Sample	C 1s				N 1s			
	Position	Assignment	FWHM	Area	Position	Assignment	FWHM	Area
g-C ₃ N ₄	284.6	C-C	1.45	14035	398.6	C=N-C	1.27	162690
	286.3	$C-NH_x$	1.05	3279	399.9	H−N−[C] ₃	1.53	54353
	288.1	C=N-C	1.23	106021	401.1	C–NH _x	1.30	27911
Na-CN	284.6	C-C	1.49	22740	398.6	C=N-C	1.31	195525
	286.3	$C-NH_x$	1.05	13035	399.9	H–N–[C] ₃	1.53	16111
	288.1	C=N-C	1.32	76971	401.1	C–NH _x	1.29	15261

Table S1. XPS fitting data of the catalysts

 Table S2.
 XPS analysis of the catalysts

		C 1s		N 1s			
Sample	Position	Assignment	C/C _{total} atomic ratio	Position	Assignment	N/N _{total} atomic ratio	
	284.6	C–C	—	398.6	C=N-C	0.664	
$g-C_3N_4$	286.3	$C-NH_x$	0.030	399.9	H−N−[C] ₃	0.222	
	288.1	C=N-C	0.970	401.1	$C-NH_x$	0.114	
	284.6	C–C	—	398.6	C=N-C	0.862	
Na-CN	286.3	$C-NH_x$	0.145	399.9	H–N–[C] ₃	0.071	
	288.1	C=N-C	0.855	401.1	$C-NH_x$	0.067	

Table S3. Result of the N_2 adsorption for the different catalysts

Sample	g-C ₃ N ₄	Na-CN	Na-CN-1	Na-CN-2	Na-CN-3
$S_{BET} / m^2 g^{-1}$	10.3	14.4	13.6	13.9	14.7