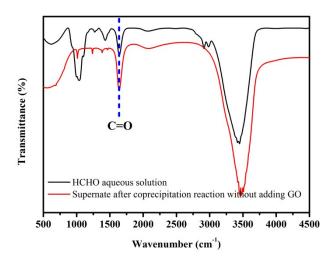
Supporting Information

A unique porous architecture built by ultrathin wrinkled NiCoO₂/rGO/NiCoO₂

sandwich nanosheets for pseudocapacitance and Li-ion storage

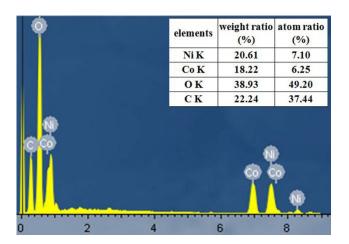
Xuning Leng,^a Yuan Shao,^a Libo Wu,^a Sufeng Wei,^b Zhonghao Jiang,^a Guoyong Wang,^{a*} Qing

Jiang,^a and Jianshe Lian^a


^a Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin

University, No. 5988 Renmin Street, Changchun 130025, PR China

^b Key Laboratory of Advanced Structural Materials, Changchun University of Technology,


Changchun 130012, PR China

^{*}Corresponding author. E-mail: materwanggy@jlu.edu.cn; Tel: +86 431 85095875; Fax: +86 431 85095876.

Fig. S1 FTIR spectra of pure HCHO aqueous solution (the black curve) and supernate after the coprecipitation reaction at 90 °C for 6 h without GO (the red curve).

We have carefully investigated chemical state of the HMT solution during co-precipitation reaction without GO. After co-precipitation reaction at 90 °C for 6 h, HCHO was generated which is proved by the FTIR spectra. This demonstrates the hydrolysis of HMT which is described by the chemical equation (1). The generated HCHO can act as a strong reluctant under a condition of weak alkaline to reduce GO.

Fig. S2 EDX spectrum of the NiCoO₂/rGO/NiCoO₂ electrode composite and the inset is the table of elements ratio.

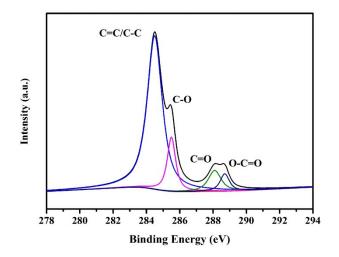


Fig. S3 XPS spectra of C 1s of thermally reduced GO at 500 °C for 2 h in flowing N₂.

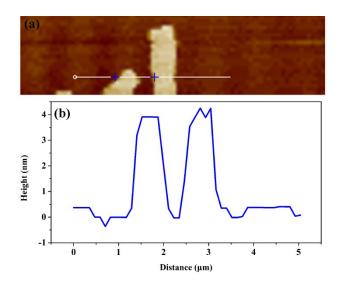
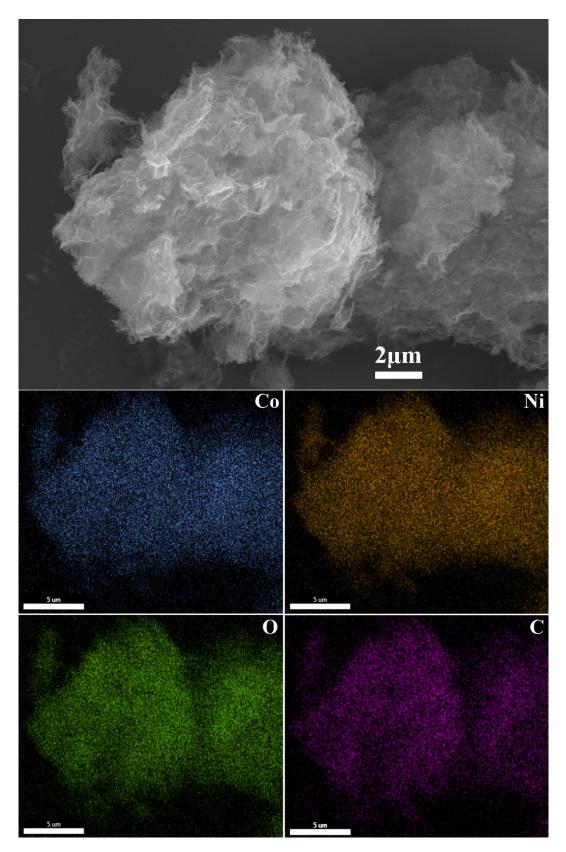



Fig. S4 (a) AFM image of NiCoO₂ sheet; (b) the corresponding depth profiles of the white line on the image. The height difference of ~ 4 nm, indicating the thickness of NiCoO₂ sheet is ~ 4 nm.

Fig. S5 FESEM image of the NiCoO₂/rGO/NiCoO₂ composite along with the corresponding elemental maps of Co, Ni, O, and C.

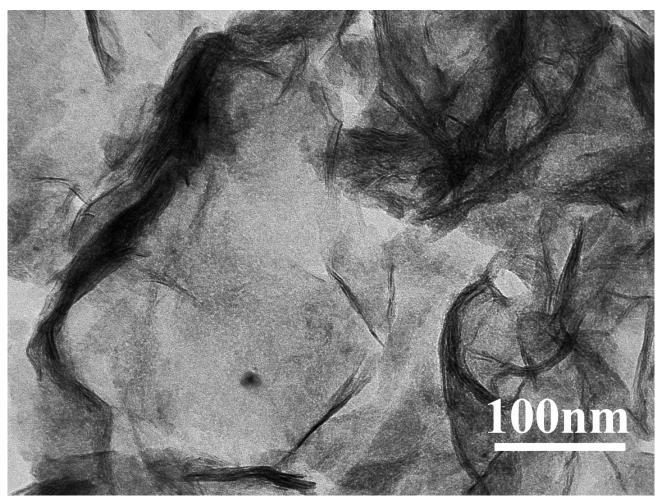


Fig. S6 TEM image of the $NiCoO_2/rGO/NiCoO_2$ composite.

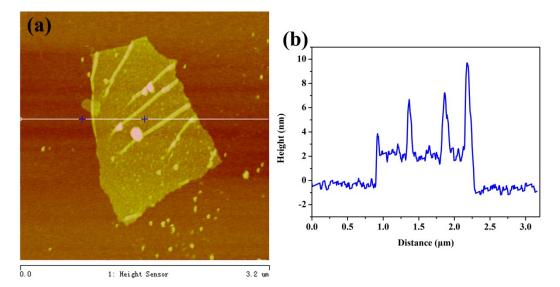
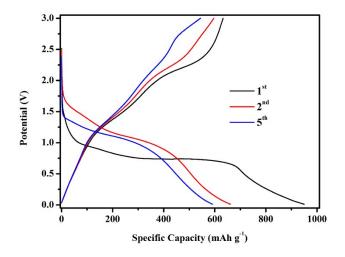
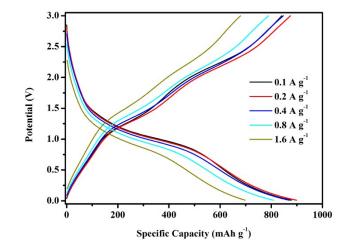




Fig. S7 (a) AFM image of GO sheet; (b) the depth profile of the line of interest on the GO sheet. The height difference of ~ 2 nm, and the height difference more than 2 nm can be attributed to the wrinkle.

Fig. S8 Representative charge/discharge voltage profiles at a current density of 0.1 A g^{-1} of the pure NiCoO₂ electrode.

Fig. S9 Representative charge/discharge curves at current densities from 0.1 to 1.6 A g^{-1} for the NiCoO₂/rGO/NiCoO₂ electrode.

Materials	Synthesis method	Rate capacity	cycling performance	Reference
CoO@N-C nanocubes	Hydrothermal	309 mA h g ⁻¹ at 1 A g ⁻¹	598 mA h g ⁻¹ in 50 th cycle at 0.1 A g ⁻¹	Ref. [35]
CoO/graphene nanosheets	Precipitation	531.2 mA h g ⁻¹ at 1.6 A g ⁻¹	1018 mA h g ⁻¹ in 520 th cycle at 0.2 A g ⁻¹	Ref. [20]
CoNiO ₂ microflower	Hydrothermal	228.4 mA h g ⁻¹ at 1 A g ⁻¹	397.4 mA h g ⁻¹ in 110 th cycle at 0.1 A g ⁻¹	Ref. [12]
NiCoO ₂ /CNT	Precipitation	933 mA h g ⁻¹ at 0.8 A g ⁻¹	~ 750 mA h g ⁻¹ in 150 th cycle at 0.4 A g ⁻¹	Ref.[17]
NiO-wrapped graphene	Reflux	403.3 mA h g ⁻¹ at 1.6 A g ⁻¹	704.8 mA h g ⁻¹ in 50 th cycle at 0.2 A g ⁻¹	Ref. [27]
NiO microspheres	Thermal decomposition	621 mA h g ⁻¹ at 1 A g ⁻¹	800 mA h g ⁻¹ in 100 th cycle at 0.5 A g ⁻¹	Ref. [46]
NiO _x –carbon	Electrospinnin g	423 mA h g ⁻¹ at 1 A g ⁻¹	676 mA h g ⁻¹ in 200 th cycle at 0.5 A g ⁻¹	Ref. [47]
NiO nanofiber	Electrospinnin g	409 mA h g ⁻¹ at 2 A g ⁻¹	~ 583 mA h g ⁻¹ in 100 th cycle at 0.08 A g ⁻¹	Ref. [48]
CoO–G–C nanofiber mats	Electrospinnin g	400 mA h g ⁻¹ at 2 A g ⁻¹	690 mA h g ⁻¹ in 352 nd cycle at 0.5 A g ⁻¹	Ref. [49]
Mesoporous Co-Ni-O nanorod	Microwave- irradiation	812 mA h g ⁻¹ at 2 A g ⁻¹	656 mA h g^{-1} in 500 th cycle at 5 A g ⁻¹	Ref. [52]
Co doped NiO nanoflakes	Chemical bath deposition	471 mA h g ⁻¹ at 2 A g ⁻¹	589.5 mA h g ⁻¹ in 50 th cycle at 0.1 A g ⁻¹	Ref. [50]
NiO hollow microspheres	Soft-template	610 mA h g ⁻¹ at 3.6 A g ⁻¹	393 mA h g ⁻¹ in 50 th cycle at 0.2 A g ⁻¹	Ref. [51]
rGO/NiCoO ₂	Co- precipitation	706 mA h g ⁻¹ At 1.6 A g ⁻¹	595 mA h g ⁻¹ in 350 th cycle at 1 A g ⁻¹	This work

Table S1. Synthesis methods and electrochemical properties of typical Ni-Co-O based anodes for LIBs reported in previous literatures.