Supporting Information

Scalable and Bendable Organized Mesoporous TiN Films Templated by a Dual-function Amphiphilic Graft Copolymer for Solid Supercapacitors

Dong Jun Kim^a, Jin Kyu Kim^a, Jae Hun Lee^a, Hyung Hee Cho^b, Youn-Sang Bae^{*a}, and Jong Hak Kim^{*a}

^a Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonseiro, Seodaemun-gu, Seoul 120-749, South Korea

^b Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu,

Seoul 03722, South Korea

* To whom correspondence should be addressed:

E-mail: mowbae@yonsei.ac.kr or jonghak@yonsei.ac.kr

Figure S1. Cross-sectional FE-SEM image of om-TiO₂.

Figure S2. EDS mapping images of (a) om-TiO₂, (b) om-TiN, and (c) om-TiN/C and (d) atomic concentrations of samples.

Atom (%)	om-TiO ₂	om-TiN	om-TiN/C
Ti2p	22.6	24.6	24.3
O1s	55.7	28.3	28.8
N1s	-	25.9	24.4
C1s	21.7	21.2	22.5

Table S1. Atomic concentrations of each sample derived from XPS data.

Figure S4. Change in capacitance retention of an om-TiN/C solid supercapacitor with a PVA/H_3PO_4 electrolyte as a function of the CV scan rate.

Figure S5. Change in capacitance retention of an om-TiN/C solid supercapacitor with a PVA/H_3PO_4 electrolyte as a function of charge–discharge cycle number.

Figure S6. Galvanostatic charge–discharge measurements of an om-TiN/C supercapacitor at high specific currents.

Figure S7. Open circuit voltage of each supercapacitor after charging to 0.8V.

Figure S8. (a-c) N_2 adsorption-desorption curves of om-TiO₂, om-TiN and om-TiN/C films and (d) pore size distributions of the films determined using the BJH method.

Figure S9. CV curves of a solid supercapacitor with a PVC-g-POEM/EMIM_TFSI solid electrolyte at different scan rates.

Materials	Electrolyte	State	Capacitance	Reference
om-TiN	PVA/H ₃ PO ₄	Solid	128.5 F/g	Our work
om-TiN/CNT	PVA/H ₃ PO ₄	Solid	213.6 F/g	Our work
om-TiN/CNT	PVC-g- POEM/EMI M_TFSI	Solid	266.8 F/g	Our work
TiN/carbon	2М КОН	Liquid	38.5 F/g	<i>J. Solid State Chem.</i> 2011 , <i>184</i> , 1333
TiN/VN/carbon	1M KOH	Liquid	170 F/g	Mater. Res. Bull. 2011, 46, 835
TiN/CNT	0.5M K ₂ SO ₄	Liquid	116 F/cm ³	J. Power Sources 2015, 300, 525
TiN/carbon	1M LiPF ₆	Liquid	135 F/g	ACS Appl. Mater. Interfaces 2011 , 3, 93
TiN/CNT	0.5M K ₂ SO ₄	Liquid	25.5 mF/cm ²	Nano Energy 2014 , 7, 104
TiN/carbon	1М КОН	Liquid	238 F/g	J. Electrochem. Soc. 2006 , 153, A2298
TiN/CNT	1M KOH	Liquid	17.85	J. Am. Ceram. Soc. 2006 , 89, 156
TiN/carbon	1M KOH	Liquid	~160 F/g	<i>Adv. Energy Mater.</i> 2014 , 4, 1300994
TiN	PVA/KOH	Solid	123 F/g	Nano Lett. 2012 , 12, 5376
TiN/graphene TiN/Fe ₂ N/graphene	1M LiCl PVA/LiCl	Liquid Solid	~170 F/g ~60 F/g	Adv. Mater. 2015, 27, 4566

Table S2. Reported capacitance values of supercapacitors based on TiN as the active material.