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Experimental Section

Materials

Sodium hypophosphite monohydrate (≥ 99.0%, NaH2PO2·H2O), nickel sulfate hexahydrate (≥ 98.0%, 

NiSO4·6H2O), Pt/C (20%) were purchased from Aldrich Chemical Co. (USA). Nafion solution (5%) was 

purchased from Dupont Co. (USA). CTAB, n-butanol, cyclohexane, sulfuric acid (≥ 98.0%, H2SO4) and 

ethanol (≥ 99.7%) were purchased from Beijing Chemical Co. (China). All the chemicals were of analytical 

grade and used as received. Highly purified N2 was supplied by Changchun Juyang Co Ltd. Ultrapure water 

(resistivity：ρ ≥ 18 MΩ cm) was used to prepare the solutions.

Physical characterizations

Scanning electron microscopy (SEM) measurements were performed with an XL 30 ESEM FEG field 

emission scanning electron microscope. Transmission electron microscopy (TEM), high resolution 

transmission electron microscopy (HR-TEM), high-annular dark-field scanning transmission electron 

microscopy (STEM), line-scan electron energy loss spectroscopy (EELS) and element mapping analysis 

were conducted on Philips TECNAI G2 electron microscope operating at 200 kV. X-ray diffraction (XRD) 

measurements were performed with a PW-1700 diffractometer using a Cu Kα (λ=1.5405 Å) radiation source 

(Philips Co.). The textural and morphological features of the Ni12P5 hollow spheres were determined by 

nitrogen physisorption at 77 K in a Micromeritics ASAP 2020. Textural properties such as the specific 

surface area pore volume and pore size distribution were calculated from each corresponding nitrogen 

adsorption−desorption isotherm, applying the Brunauer−Emmett−Teller (BET) equation and the 

Barrett−Joyner−Halenda (BJH). To explore the hollow structure of the Ni12P5 spheres, the Ni12P5 spheres 

sample with reaction times of 24 h was ball-milled with planetary ball-milling instrument for 1 hours. The 

bulk compositions of Ni12P5 hollow spheres were evaluated using an inductively coupled plasma-atomic 

emission spectrometer (ICP-AES, X Series 2, Thermo Scientific USA).

Electrochemical measurements

Electrochemical measurements were performed with EG & G PARSTAT 4000 potentiostat/galvanostat 

(Princeton Applied Research Co., USA). A conventional one-component three-electrode cell was used, 

including a glassy carbon electrode (GCE, geometric area = 0.07 cm2) as the working electrode, a graphite 

plate was used as the auxiliary electrode and a saturated calomel electrode (SCE, Hg/Hg2Cl2) electrode was 

used as the reference electrode. To prepare the working electrode, 5 mg of the catalyst and 50 μL of 5 wt% 

Nafion solution were dispersed in 950 mL of ethanol solvent, followed by ultrasounded at least 30 min. 

Then a certain amount of the ink was dropped onto a GCE (~loading: 0.71 mg cm-2). For the HER reactions, 

the electrolyte (0.5 M H2SO4) was degassed by bubbling N2 for at least 30 minutes before the 

electrochemical measurements. Prior recording the HER activity of Ni12P5 hollow spheres, the catalysts 



were activated by 20 CV scans along the potential window of 0.1 to -0.5 V vs. RHE in 0.5 M H2SO4 at a 

scan rate of 100 mV s-1, then the linear sweep voltammetry (LSV) with a scan rate of 5 mV s-1 was 

performed. All the potentials reported in our work were vs. the reversible hydrogen electrode (RHE). In 0.5 

M H2SO4 (pH = 0.56), E(RHE) = 0.242+ 0.059*pH. Ohmic drop was corrected using the current interrupt 

methods, all data have been corrected for 90% iR potential drop. The electrochemical impedance spectra 

(EIS) were recorded at the frequency range from 100 kHz to 10 mHz with 10 points per decade in 0.5 M 

H2SO4. The amplitude of the sinusoidal potential signal was 5 mV.

The generated gas was confirmed by gas chromatography analysis and measured quantitatively using a 

calibrated pressure sensor to monitor the pressure change in the anode compartment of a H-type electrolytic 

cell. The glass carbon sheet (1*2 cm) was used as working electrode with a catalysts loading of 0.536 mg 

cm-2. The Faradaic efficiency was calculated by comparing the amount of measured hydrogen with 

calculated hydrogen generated at a constant oxidative current of 10 mA cm-2 in 0.5 M H2SO4 for at least 100 

min electrolysis (assuming 100% FE). Pressure data during electrolysis were recorded using a CEM DT-

8890 Differential Air Pressure Gauge Manometer Data Logger Meter Tester with a sampling interval of 1 

point per second. 



Table S1 Comparison of HER activities of Ni12P5 hollow spheres catalysts with recently published nickel 

phosphide catalysts.
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Fig. S1 The enlarged SEM (a), HR-TEM (b) images and SA-XRD (c) of Ni12P5 hollow spheres.





Fig. S2 SEM image (a), TEM image (b), N2 adsorption-desorption isotherms (c) and BJH pore-size 
distribution (d) of as-prepared Ni12P5 solid spheres.



Fig. S3 mass effect of Ni12P5 hollow spheres. Polarization curves without (a) and without (b) iR-correction.



Figure S4 Nyquist plots of Ni12P5 solid spheres and Ni12P5 hollow spheres at an overpotential of 50 mV.



Fig. S5 Calculated versus actual hydrogen production catalyzed by Ni12P5 hollow spheres at a constant 
current of 10 mA cm-2 in 0.5 M H2SO4.



Video. A short video about the hydrogen produced under Ƞ = -200 mV.
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