Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

1	Supporting information
2	
3 1	
4	
5	Formation of porous $MoO_2(a)C$ hand-octanedrons from a
6	polyoxometalate-based metal-organic framework for highly
7	reversible lithium storage
8	Guoliang Xia ¹ , Dong Liu ¹ , Fangcai Zheng ¹ , Yang Yang ¹ , Jianwei Su ¹ , Qianwang Chen ^{1,2}
9	1 Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science
10	& Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology,
11	University of Science and Technology of China, Hefei 230026, China.
12	2 High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of
13	Sciences, Hefei 230031, China. Correspondence and requests for materials should be addressed to
14	Q.C. (email: cqw@ustc.edu.cn).
15	

18 Figure S1. XRD patterns of Cu-MoO₂@C and MoO₂@C. This pattern clearly indicates

19 that the metallic Cu could be completely removed after the treatment with the aqueous 20 solution of $FeCl_3$.

22 Figure S2. TEM image of NENU-5.

23

24 Figure S3. XRD patterns of as-synthesized NENU-5 and simulated NENU-5.

26 Figure S4. FESEM of as-prepared MoO2@C nano-octahedron.

28 Figure S5. XPS spectra of (a) MoO₂@C, (b) Mo 3d, (c) C 1s, (d) O1s.

As displayed in Figure S5b, respectively, two pronounced main peaks are located 29 at 232.9 eV and 236.1 eV , which could be resigned to Mo $3d_{5/2}$ and Mo $3d_{3/2}$ binding 30 energy of Mo(VI) oxidation state. There are none peaks related to Mo(IV) $3d_{5/2}$ or 31 Mo(IV) 3d_{3/2}, which are the main composition according to the result of the power X-32 Ray diffraction (XRD). The reasons can be as follows. Firstly, XPS only distinguish 33 the valence state and composition of the sample's surface, while the composition of 34 bulk phase is what XRD characterizes; on the other hand, deriving from surface 35 oxidation of metastable of MoO_2 when exposed to air, Mo(VI) is discovered, which can 36 also mean that the majority of MoO₂ are coated by carbon matrix. The high-resolution 37 C1s spectrum is displayed in Figure S5c, the main peak at 284.8 eV indicates that the 38 graphite carbon is the majority. The C-O and C=O bonds at 286.3 eV and 287.9 eV, 39 respectively, are also shown in C1s spectrum. The O1s peaks are broad suggesting the 40 different chemical states of oxygen (Figure S5d). 41

Figure S7. HRTEM of the as-made MoO₂@C nano-octahedron.

48 Figure S8. Cycling performance of MoO₂@C at a current density of 1 A g⁻¹.

Figure S9. Coulombic efficiency of porous MoO₂@C nano-octahedrons and carbon 51 matrix.

53 Figure S10.TGA curve of porous MoO₂@C nano-octahedrons in air.

The initial weight loss of 7% could be the weight of water, which were absorbed 54 from the air. Then followed by the gradual oxidation of MoO_2 to MoO_3 and the 55 combustion of carbon. Since the MoO₂ particles were homogeneous embedded in the 56 carbon skeleton, the weight loss caused by the combustion of carbon could be the 57 majority. Then a significant weight loss could happen. As the sample is composed of 58 59 MoO₂ and carbon, and converts to only MoO₃ after heating to 600 °C with remaining weight of 72 wt.%. the MoO₂ content is estimated to be 68.8 wt% in the porous 60 $MoO_2@C$ nano-octahedrons according to the following equation: $m (MoO_2) = 72$ wt.% 61 $M(MoO_2)/M(MoO_3)/(1-7 \text{ wt.}) = 72 \text{ wt.} + 128/144/(93 \text{ wt.}) \approx 68.8 \text{ wt.}$. And the 62 carbon content is estimated to be 31.2 wt.%. 63

Figure S11. (a, b) SEM and TEM images of porous MoO₂@C nano-octahedrons after 66 50 cycles, (c, d) SEM and TEM of porous MoO2@C nano-octahedrons after 850

- 67 cycles.
- 69 Table S1. Comparison of BET specific surface area of various MoO2/C hybrid anode
- 70 materials

Samples	BET specific surface area	Reference
	$(m^2 g^{-1})$	
Porous MoO2@C nano-octahedrons	485	This work
MoO ₂ -ordered mesoporous carbon hybrids	304	1
Cage-like MoO ₂ -carbon	70.01	4
MoO ₂ -ordered mesoporous carbon	407	5
Carbon-coated MoO ₂ nanospheres	31	7
Interconnected MoO ₂ nanocrystals with carbon	84.9	8
nanocasting		
MoO ₂ -carbon nanowires	93.3	9
Carbon coated MoO ₂ nanobelts	46.9	10
Hierarchical MoO ₂ -graphene	39.2	11
Graphene oxide-wrapped MoO2 porous nanobelts	44.89	15

76 Table S2. The comparison of the capacity of present work with reported MoO_2/C

77 hybrid materials

Samples	Methods	Current	Cycle	Capacity	Ref.
		density(mA g ⁻¹)	number	$(mA h g^{-1})$	
Porous MoO2@C nano-	Solution and	100	50	1442	This
octahedrons	annealed	1000	850	443.8	work
MoO ₂ -ordered mesoporous carbon hybrids	Solvothermal	100	50	1049.1	1
MoO ₂ nanoparticles embedded in carbon nanofibers	Solution and annealed	50	350	734	2
Hierarchical carbon-MoO ₂ core-shell spheres	Hydrothermal	167.6	60	600	3
Cage-like MoO ₂ -carbon	Hydrothermal	200	80	692.5	4
MoO ₂ -ordered mesoporous carbon	Carbon thermal reduction	50	50	689	5
Hierarchical MoO ₂ -C spheres	Hydrothermal	200	150	812	6
Carbon-coated MoO ₂ nanospheres	Hydrothermal and annealing	838	30	650	7
Interconnected MoO ₂ nanocrystals with carbon nanocasting	Hydrothermal	200	70	640	8
MoO ₂ -carbon nanowires	Oil bath and calcination	200	20	500	9
Carbon coated MoO ₂ nanobelts	Hydrothermal and calcination	100	30	617.2	10
Hierarchical MoO ₂ - graphene	Solution and anealed	1000	70	600	11
MoO ₂ -graphene thin film	Layer-by-layer self-assembly	47.8	100	675.9	12
3D graphene supported MoO ₂	Chemical vaper deposition	200	150	986.9	13
MoO ₂ -graphene	Hydrothermal and calcination	100	60	1009.9	14
Graphene oxide-wrapped MoO2 porous nanobelts	Solution and hydrothermal	60	-	974	15

82	1.	A. Chen, C. Li, R. Tang, L. Yin and Y. Qi, <i>Physical Chemistry Chemical Physics</i> , 2013, 15,
83		13601-13610.
84	2.	Y. Sun, X. Hu, W. Luo and Y. Huang, Journal of Materials Chemistry, 2012, 22, 425-431.
85	3.	J. Besnardiere, X. Petrissans, C. Surcin, V. Buissette, T. Le Mercier, M. Morcrette, D. Portehault
86		and S. Cassaignon, RSC Advances, 2014, 4, 21208-21215.
87	4.	B. Liu, X. Zhao, Y. Tian, D. Zhao, C. Hu and M. Cao, Physical Chemistry Chemical Physics,
88		2013, 15 , 8831-8837.
89	5.	L. Zeng, C. Zheng, C. Deng, X. Ding and M. Wei, ACS Applied Materials & Interfaces, 2013, 5,
90		2182-2187.
91	6.	HJ. Zhang, TH. Wu, KX. Wang, XY. Wu, XT. Chen, YM. Jiang, X. Wei and JS. Chen,
92		Journal of Materials Chemistry A, 2013, 1, 12038-12043.
93	7.	Z. Wang, J. S. Chen, T. Zhu, S. Madhavi and X. W. Lou, Chemical Communications, 2010, 46,
94		6906-6908.
95	8.	L. Zhou, H. B. Wu, Z. Wang and X. W. Lou, ACS Applied Materials & Interfaces, 2011, 3,
96		4853-4857.
97	9.	Q. Gao, L. Yang, X. Lu, J. Mao, Y. Zhang, Y. Wu and Y. Tang, Journal of Materials Chemistry,
98		2010, 20 , 2807-2812.
99	10.	L. Yang, L. Liu, Y. Zhu, X. Wang and Y. Wu, Journal of Materials Chemistry, 2012, 22, 13148-
100		13152.
101	11.	Y. Sun, X. Hu, W. Luo and Y. Huang, ACS Nano, 2011, 5, 7100-7107.
102	12.	F. Xia, X. Hu, Y. Sun, W. Luo and Y. Huang, Nanoscale, 2012, 4, 4707-4711.
103	13.	Z. X. Huang, Y. Wang, Y. G. Zhu, Y. Shi, J. I. Wong and H. Y. Yang, Nanoscale, 2014, 6, 9839-
104		9845.
105	14.	Q. Tang, Z. Shan, L. Wang and X. Qin, <i>Electrochimica Acta</i> , 2012, 79, 148-153.
106	15.	W. Tang, C. X. Peng, C. T. Nai, J. Su, Y. P. Liu, M. V. V. Reddy, M. Lin and K. P. Loh, Small,
107		2015, 11 , 2446-2453.
108		