Supporting Information

Novel Fe₂P/graphitized carbon Yolk/shell Octahedrons for High-efficiency Hydrogen Production and Lithium Storage

Jiao Yang[#], Ya Ouyang[#], Huijuan Zhang, Haitao Xu, Yan Zhang, Yu Wang*

The State Key Laboratory of Mechanical Transmissions and the School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China [#]these authors contributed equally to this work. *E-mail: wangy@cqu.edu.cn; prospectwy@gmail.com

METHODS

Fabrication of Fe₂P/GC yolk/shell octahedrons composite

First, 12 mL deionized water, 12 mL glycol, 1 mL Fe(NO₃)₃ solution (1 M), 5 mL NaH₂PO₄ solution (1 M) and 4 mL Na₂CO₃ solution (1 M) were mixed orderly with continued stirring. Then, the precursor solution became faint yellow. After the magnetically stir for 30 min, 5 mL glucose aqueous solution (1 M) was added. Then, the mixed solution was poured into the Teflon-lined stainless-steel autoclaves (45 mL), and put into an oven for hydrothermal reaction under 180 °C for 20 h. The resultant sedimentation which changed into black color was collected, washed, and dried. Finally, the precursor Fe₂PO₅/polymeric layer octahedrons were then transferred into graphite boat and calcined in tube furnace at 800 °C under H₂ atmosphere for 200 min. (The pure Fe₂P was prepared through the above methods except the addition of glucose.)

Characterization

An X-ray diffractometer with Co K α (λ =1.78897 Å) radiation (XRD, Bruker D8 Advance), a field-emission scanning electron microscope (JEOL, JSM-7800F, 15 kV), a transmission electron microscope (Philips, Tecnai, F30, 300 kV) coupled with an energy-dispersive spectrometer (EDS) analyzer, a BET surface-area and pore-size analyzer (Quantachrome Autosorb-6B), and a RENISHAW Invia Raman microscope (voltage (ac) 100–240 V, Power 150 W, UK) were introduced.

Electrochemical Measurements

As for HER, electrochemical measurement was fulfilled on a CHI660E

electrochemistry work-station, which was studied in a three-electrode device including a working electrode of clean glassy carbon electrode (GCE) (0.07 cm²), a reference electrode of saturated calomel electrode (SCE), and a counter electrode of Pt foil. The catalyst suspension was prepared by following steps, 4 mg of the obtained Fe₂P/GC yolk/shell octahedrons composite as catalyst, 100 μ L of Nafion solution (0.5 wt %) and 300 μ L of ethanol were mixed by ultrasonication. Then, 4 μ L of the suspension was dropped on the GCE (mass loading 0.48 mg cm⁻²) and dried at room temperature as working electrode. Linear sweep voltammetry (LSV) was carried out between -0.2 to -0.6 V at a scanning rate of 50 mV s⁻¹ in 0.5 M H₂SO₄ solution. The durability analysis was taken by cyclic voltammetry (CV) scanning from -0.2 to -0.6 V at 50 mV s⁻¹ for 2000 cycles. The stability estimation was taken by amperometric i-t curve for 12 h at an electrostatic overpotential of 89 mV, i.e., the static voltage was 0.37 V (0.089+0.281=0.370 V). According to the equation E(RHE) = E(SCE) + 0.281 V, all the potentials were involved in reversible hydrogen electrode (RHE) in 0.5 M H₂SO₄ solution.

As for LIBs test, a mixture consisted of 80 wt % of composite, 10 wt % of carbon black, and 10 wt % of polyvinyl difluoride (PVDF) using 1- methyl-2-pyrrolidinone (NMP) as solvent was stirred overnight, and then spreaded on Cu foils. The Cu foils were then used as working electrode (mass loading 2.1 mg cm⁻²). LiPF₆ (1 M) in ethylene carbonate/diethyl carbonate (1/1 in volume) was used as electrolyte. Pure Li foil was used as counter electrode and reference electrode. The cell was assembled in an argon-filled glovebox. A LAND battery program–control test system was applied to record discharge-charge curves, and a CHI660D electrochemistry workstation was utilized to record CV curves ranged of 0.01-3 V and EIS over a frequency from 0.01 Hz to 100 kHz.

Figure S1. SEM image of broken Fe_2P/GC yolk/shell octahedrons composite.

Figure S2. Energy-dispersive spectrum (EDS) of Fe₂P/GC yolk/shell octahedrons composite.

Figure S3. SEM images of Fe₂P/GC calcined at 750 $^{\rm o}$ C (a), 800 $^{\rm o}$ C (b) and 850 $^{\rm o}$ C (c).

Figure S4. XRD pattern of Fe_2P/GC calcined at 750 $^{\rm o}C$, 800 $^{\rm o}C$ and 850 $^{\rm o}C$.

Figure S5. N_2 absorption/desorption curves of solid Fe₂P/GC octahedrons calcined and 750 °C. The inset exhibits its pore size distribution.

Figure S6. HRTEM image of GC shells from final Fe₂P/GC yolk/shell composite.

Figure S7. Raman spectrum of as-synthesized Fe₂P/GC yolk/shell octahedrons calcined at 800 °C (a) and solid Fe₂P/GC composite calcined at 750 °C (b).

Figure S8. LSV curves of Fe_2P/GC calcinated at 750 $^{\rm o}C$, 800 $^{\rm o}C$ and 850 $^{\rm o}C$ at 50 mV s^-1 over 500 cycles.

Figure S9. Discharge-charge curves of pure Fe_2P (a) and bare GC after the dissolution of Fe_2P/GC yolk/shell octahedrons in concentrated hydrochloric acid (b) at the rate of 0.1 A g⁻¹.

Figure S10. Nyquist plots of Fe_2P/GC yolk/shell octahedrons composite and pure Fe_2P within the frequency range from 0.01 Hz to 100 KHz.

Figure S11. SEM image of Fe₂P/GC yolk/shell composite after electrochemical test.

Materials	Specific surface area (SSA) (m ² g ⁻¹)	Pore size	
Cr ₂ O ₃ @OPC ¹	140	20	
Co ₃ O ₄ -HNP/Al ₂ O ₃ ²	207.85	4	
np-Mo ₂ C NWs ³	69.3	3.3	
Ni ₂ P ⁴	32.8	-	
C@NiCoP ⁵	110	3.8	
CoP NRAs ⁶	33.3	-	
Fe ₂ P/GCS ⁷	132.2	3.9	
This work	243.3	4.1	

Table S1. N_2 absorption/desorption data of other materials for comparison.

Table S2. Composition of obtained Fe₂P/GC yolk/shell octahedrons

	Dissolution	ICP-AES	
Materials	Weight ratio	Molar ratio	Molar ratio
Fe ₂ P/GC yolk/shell	Fe:P:C	Fe:P:C	Fe:P:C
octahedrons	69.1:19.1:11.8	1.23:0.61:0.98	1.25:0.62:0.96

Catalyst	Electrolyte	Onset	Tafel Slope	$\eta_{10}{}^a$	$\eta_{20}{}^{b}$
		Overpotential	(mV dec ⁻¹)	(mV)	(mV)
Mo ₂ C/CNT ⁸	0.5 M H ₂ SO ₄	25	55.2	152	-
WC ⁹		15	72	145	189
$1T-MoS_2^{10}$		-	43	187	-
FeP/NCNT ¹¹		66	59	113	134
FeP NAs/CC ¹²		20	45	58	79
CoP/CC ¹³		30	30.1	49	59
Ni ₂ P/C ¹⁴		60	54	87	115
MoP ¹⁵		50	54	134	162
WP ¹⁶		41	54	120	140
Fe ₂ P/GCS ⁷		40	49	88	107
Fe ₂ P/NGr ¹⁷		60	65	138	164
This work		35	45	76	98

Table S3. HER performance of Fe_2P /GC yolk/shell composite compared with other transition metal compound catalysts.

a η_{10} : overpotential requirement for current density of 10 mA cm⁻².

b η_{20} : overpotential requirement for current density of 20 mA cm⁻².

References

- 1. Y. Gan, Y. Lai, Z. Zhang, W. Chen, K. Du and J. Li, J. Alloys Compd., 2016, 665, 365-372.
- 2. J. Yang, H. J. Qiu, L. Peng, W. Li and Y. Wang, *Nanoscale*, 2015, 7, 15983-15989.
- 3. L. Liao, S. Wang, J. Xiao, X. Bian, Y. Zhang, M. D. Scanlon, X. Hu, Y. Tang, B. Liu and H. H. Girault, *Energy Environ. Sci.*, 2014, 7, 387-392.
- 4. E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis and R. E. Schaak, J. Am. Chem. Soc., 2013, 135, 9267-9270.
- 5. Y. Bai, H. Zhang, L. Liu, H. Xu and Y. Wang, *Chem. Eur. J.*, 2016, 22, 1021-1029.
- 6. L. Li, X. Li, L. Ai and J. Jiang, *RSC Advances*, 2015, 5, 90265-90271.
- 7. Y. Zhang, H. Zhang, Y. Feng, L. Liu and Y. Wang, *ACS Appl. Mater. Interfaces*, 2015, 7, 26684-26690.
- 8. W. F. Chen, C. H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. T. Muckerman, Y. Zhu and R. R. Adzic, *Energy Environ. Sci.*, 2013, 6, 943-951.
- 9. X. Fan, H. Zhou and X. Guo, *ACS Nano*, 2015, 9, 5125-5134.
- 10. M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li and S. Jin, *J. Am. Chem. Soc.*, 2013, 135, 10274-10277.
- 11. Q. Liu, Z. Pu, A. M. Asiri and X. Sun, *Electrochim. Acta*, 2014, 149, 324-329.
- 12. Y. Liang, Q. Liu, A. M. Asiri, X. Sun and Y. Luo, ACS Catal., 2014, 4, 4065-4069.
- 13. X. Yang, A.-Y. Lu, Y. Zhu, M. N. Hedhili, S. Min, K.-W. Huang, Y. Han and L.-J. Li, *Nano Energy*, 2015, 15, 634-641.
- 14. Y. J. Bai, H. J. Zhang, X. Li, L. Liu, H. T. Xu, H. J. Qiu and Y. Wang, *Nanoscale*, 2015, 7, 1446-1453.
- 15. P. Xiao, M. A. Sk, L. Thia, X. Ge, R. J. Lim, J.-Y. Wang, K. H. Lim and X. Wang, *Energy Environ. Sci.*, 2014, 7, 2624-2629.
- 16. J. M. McEnaney, J. C. Crompton, J. F. Callejas, E. J. Popczun, C. G. Read, N. S. Lewis and R. E. Schaak, *Chem. Commun.*, 2014, 50, 11026-11028.
- 17. Z. P. Huang, C. C. Lv, Z. Z. Chen, Z. B. Chen, F. Tian and C. Zhang, *Nano Energy*, 2015, 12, 666-674.