Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

for

A Durable Luminescent Ionic Polymer for Rapid Detection and Efficient Removal of Toxic $Cr_2O_7^{2-}$

Yangxin Wang,^{a,b} Huaixia Zhao,^a Xinxiong Li^a and Ruihu Wang*^a

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the

Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China

^b University of Chinese Academy of Sciences, Beijing 100049, China *E-mail: ruihu@fjirsm.ac.cn

Fig. S1 Solid-state ¹³C NMR spectrum of IMIP-Br.

Fig. S2 (a) CIE chromaticity diagram for TIPA (x: 0.20, y: 0.19) and IMIP-Br (x: 0.24, y: 0.31); (b) luminescent photographs of TBMB, TIPA and IMIP-Br excited at 365 nm; (c) luminescent photographs of IMIP-Br (0.047 mmol, 15 mg) after immersion in different concentrations of aqueous $K_2Cr_2O_7$ solution (35 mL). The circular slices are prepared by pressing IMIP-Br (10 mg) under 10 MPa in a mould with a diameter of 6 mm.

Fig. S3 (a) UV-Vis spectra of aqueous $K_2Cr_2O_7$ solution (0.55 mmol L⁻¹, 20 mL) before and after anion exchanging with IMIP-Br (0.022 mmol, 6.9 mg); (b) colour of IMIP-Br and IMIP-Cr.

Fig. S4 (a) Photographs of IMIP-Br in water by sonication (left) and after standing for 48 h (right); (b) adsorption-swelling experiment of IMIP-Br (upper: the original slice; bottom: the slice after one drop of water was added). The circular slices are prepared by pressing IMIP-Br (10 mg) under 10 MPa in a mould with a diameter of 6 mm.

Fig. S5 Field-dependent magnetization curves at 300 K for bare Fe₃O₄ and IMIP-Fe.

Fig. S6 PXRD patterns for bare Fe_3O_4 and IMIP-Fe.

Fig. S7 Photographs of colour change of aqueous $K_2Cr_2O_7$ solution (0.55 mmol L⁻¹, 20 mL) and magnetic separation of IMIP-Fe after anion exchange.

Fig. S8 Capture capacity of IMIP-Fe for $Cr_2O_7^{2-}$ within 5 min at different temperatures.

Fig. S9 (a) UV-Vis spectra of aqueous $K_2Cr_2O_7$ solution (0.055 mmol L⁻¹, 20 mL) during exchange with IMIP-Fe (4.4×10^{-3} mmol, 1.8 mg); (b) photographs of colour change of the aqueous $K_2Cr_2O_7$ solution and the magnetic separation of IMIP-Fe after exchange.

Fig. S10 SEM image of IMIP-Fe after using for consecutive six cycles.

Fig. S11 UV-Vis spectra of K₂Cr₂O₇ aqueous solution (20 mL) during exchange with IMIP-Fe in selective adsorption experiment. (a) Initial K₂Cr₂O₇ aqueous solution $(Cr_2O_7^{2-} 0.011 \text{ mmol})$; (b) aqueous solution contains $Cr_2O_7^{2-} 0.011 \text{ mmol}$, $NO_3^{-} 0.022$ mmol, Cl⁻ 0.022 mmol and BF₄⁻ 0.022 mmol; (c) aqueous solution contains $Cr_2O_7^{2-}$ 0.011 mmol, $\mathrm{NO_3^-}$ 0.022 mmol, Cl^ 0.022 mmol, $\mathrm{BF_4^-}$ 0.022 mmol, and $\mathrm{SO_4^{2-}}$ 0.011 mmol.

cationic MOFs.		
Cationic materials	Maximum capacities (mg g ⁻¹)	References
$Ag_2(btr)_2 \cdot 2ClO_4 \cdot 3H_2$	212.8	S1
0		
FIR-53	74.2	S2
FIR-54	103.1	S2
ZJU-101	245	S3
MOR-1-HA	242±17	S4
MOR-1-HA	280±19	S5

166

318 251

S6

this work

this work

1-SO42-

IMIP-Br

IMIP-Fe

Table S1. Capture capacities for $Cr_2O_7^{2-}$ of IMIP-Br, IMIP-Fe and reported

References:

- S1. X. Li, H. Xu, F. Kong and R. Wang, Angew. Chem. Int. Ed., 2013, 52, 13769-13773.
- S2. H. R. Fu, Z. X. Xu and J. Zhang, Chem. Mater., 2015, 27, 205-210.
- S3. Q. Zhang, J. Yu, J. Cai, L. Zhang, Y. Cui, Y. Yang, B. Chen and G. Qian, *Chem. Commun.*, 2015, **51**, 14732-14734.
- S4. S. Rapti, A. Pournara, D. Sarma, I. T. Papadas, G. S. Armatas, A. C. Tsipis, T. Lazarides, M. G. Kanatzidis and M. J. Manos, *Chem. Sci.*, 2016, 7, 2427-2436.
- S5. S. Rapti, A. Pournara, D. Sarma, I. T. Papadas, G. S. Armatas, Y. S. Hassan, M. H. Alkordi, M. G. Kanatzidis and M. J. Manos, *Inorg. Chem. Front.*, 2016, **3**, 635-644.
- S6. A. V. Desai, B. Manna, A. Karmakar, A. Sahu and S. K. Ghosh, *Angew. Chem. Inter. Ed.*, 2016, DOI: 10.1002/anie.201600185.