Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

3D Urchin-shaped Ni₃(VO₄)₂ hollow nanospheres for high-performance asymmetric

supercapacitor applications

Rudra Kumar, Prabhakar Rai*, Asutosh Sharma*

Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur

208016, India

*Email: prkrai@iitk.ac.in, ashutos@iitk.ac.in

Figure S1. XRD pattern of Ni₃(VO₄)₂ precursors synthesized by hydrothermal method.

Figure S2. TGA-DTA curves of $Ni_3(VO_4)_2$ precursors synthesized by hydrothermal method using (a) NH₄OH and (b) NaOH.

Figure S3. SEM images of $Ni_3(VO_4)_2$ nanostructures after hydrothermal synthesis; (a) nanospheres and (b) nanoparticles at 180°C for 20 h, (c) nanospheres at 180°C for 10 h and (d) nanospheres at 120 °C for 20 h.

Figure S4. EDS analysis and elemental mapping of $Ni_3(VO_4)_2$ nanospheres.

Figure S5. EDS analysis and elemental mapping of $Ni_3(VO_4)_2$ nanoparticles.

Figure S6. BET surface area and pore size distribution of $Ni_3(VO_4)_2$ nanostructures; (a) nanospheres and (b) nanoparticles.

Figure S7. Photograph showing the change in colour of (a) NiCl₂·6H₂O solution after (b) NH₄OH and (c) NaOH addition.

Figure S8. (a) UV-visible and (b) FTIR spectra of reaction intermediates formed during the synthesis of $Ni_3(VO_4)_2$ nanostructures.

The formation of reaction intermediates has been confirmed by UV-visible and FTIR and spectroscopy. UV visible spectra of green $[Ni(H_2O)_6]^{2+}$ ions (hexaquonickel(II) ions) shows absorbance at 395 nm as shown in Fig. S8a.¹ The addition of NH₄OH resulted in blue shift in peak position from 395 to 357 due to the $[Ni(NH_3)_6]^{2+}_{(aq)}$ (hexamminenickel(II) ion) complex ions formation.² The origin of UV visible absorbance in these complexes is related to crystal field splitting of d orbital of nickel.³ In an octahedral complex, the metal is at the centre of the octahedron and ligands are at the six corners. Thus under the influence of an octahedral ligand field the d orbitals split into two groups (e_g and t_{2g}) of different energies. The

difference in the energy between the two d levels is given by Δo or 10Dq. The two e_g (d_{x2-y2} and d_{z2}) orbitals are 6Dq above the average level and three t_{2g} (d_{xy}, d_{yz}, d_{xz}) orbitals are 4Dq below the average. The magnitude of crystal field splitting depends on the nature of ligand. Since, NH₃ is stronger ligand than H₂O, hence it cause larger crystal field splitting and therefore absorption peak was blue-shifted. The formation of Ni(OH)₂ in NaOH medium was confirmed from absorption peak at 385 nm.⁴

The formation of these intermediates has also been confirmed by FTIR spectra and shown in Fig. S8b. In Ni(OH)₂, the band at 3642 cm⁻¹ and a strong absorption at 1400-1600 cm⁻¹ can be ascribed to the stretching and bending modes of surface-adsorbed/trapped (hydrogen-bonded) water molecules, indicating the presence of water molecules in the structure. Ni–OH bending vibrations result in typical absorption bands at low wavenumbers, such as at 1071 cm⁻¹, in agreement with the previous reports.⁵ In [Ni(NH₃)₆]²⁺ complex ions, NH₃ asymmetric and symmetric stretching vibrations were found at 3338 and 3180 cm⁻¹, respectively. In the bending region, the band at 1603 and 1172 cm⁻¹ was due to asymmetric and symmetric H- N-H deformation, respectively.⁶ The prominent bands at 2850–2950 are typical of C–H symmetric stretching and bending vibrations, respectively. This confirms incomplete removal of ethanol.⁷ Thus, UV-visible and FTIR spectra confirmed the formation of two kinds of intermediates during Ni₃(VO₄)₂ nanostructures synthesis, which guided the growth process and resulted in the formation of different morphologies.

Figure S9. (a) CV and (b) GCD curve of $Ni_3(VO_4)_2$ nanoparticles.

Figure S10. (a) Rate capability and (b) long term stability of $Ni_3(VO_4)_2$ nanospheres.

Table S1. Comparison of asymmetric supercapacitor performance of our electrodes with

 others full cell device reported in literature.

Asymmetric Supercapacitor	Voltage	Energy	Power	Cyclic	Ref. No
	(V)	Density	Density	Stability	
		(Whkg ⁻¹)	(Wkg ⁻¹)		
AC//Co(OH) ₂ /Ni foam	1.6	20.3	90.6	69% (1000)	8
3D rGO//Ni(OH) ₂	1.7	39.9	-	95% (3000)	9
AC//Ni(OH)2@3D Ni	1.3	21.8	660	96% (3000)	10
AC//Ni(OH) ₂ /XC-72	1.6	36	490.7	85% (1000)	11
Ni ₃ S ₂ /MWCNT-NC//AC	1.6	19.8	798	90 %(5000)	12
AC//Co ₃ O ₄ NSs–rGO	1.5	13.4	2166	89% (1000)	13
VN//Co(OH) ₂	1.6	22	160	82% (1000)	14
Ni/VN//Ni _{1-x} V _x O ₂	1.6	23.3	176.7	87% (1000)	15

AC//NiCo ₂ O ₄ NSs@HMRAs	1.5	15.42	-	106%	16
				(2500)	
AC//CuO	1.4	19.7	700	96%	17
				(3000)	
Ni ₃ (VO ₄) ₂ //AC	1.6	25.3	240	92%	This
				(1000)	work

References;

- 1. G. M. Wieder, J. Chem. Edu., 1986, 63, 988-989.
- 2. C. K. Jørgensen, Acta Chem. Scand., 1956, 10, 887-910.
- D. F. Shriver and P. W. Atkins, *Inorganic Chemistry*, Oxford University Press, 3rd edition, 2001, 227-236.
- 4. Y. Qi, H. Qi, J. Li and C. Lu, J. Cryst. Growth, 2008, 310, 4221-4225.
- D. S. Hall, D. J. Lockwood, S. Poirier, C. Bock and B. R. MacDougall, J. Phys. Chem. A, 2012, 116, 6771–6784.
- E. Mikuli, A. Migdał-Mikuli and D. Majda, J. Therm. Anal. Calorim., 2013, 112, 1191–1198.
- 7. W. Xing, F. Li, Z.-F. Yan and G. Q. Lu, J. Power Sources, 2004, 134, 324–330.
- S. Yang, K. Cheng, K. Ye, Y. J. Li, J. Qu, J. L. Yin, G. L. Wang and D. X. Cao, J. Electroanal. Chem., 2015, 741, 93–99.
- F. Luan, G. M. Wang, Y. C. Ling, X. H. Lu, H. Y. Wang, Y. X. Liu and Y. Li, Nanoscale, 2013, 5, 7984–7990.

- 10. Y. Z. Su, K. Xiao, N. Li, Z. Q. Liu and S. Z. Qiao, J. Mater. Chem. A, 2014, 2, 13845–13853.
- L. Sui, S. Tang, Z. Dai, Z. Zhu, H. Huangfu, X. Qin, Y. Deng and G. M. Haarberg, New J. Chem., 2015, 39, 9363-9371.
- C. S. Dai, P. Y. Chien, J. Y. Lin, S. W. Chou, W. K. Wu, P. H. Li, K. Y. Wu and T. W. Lin, ACS Appl. Mater. Interfaces, 2013, 5, 12168.
- 13. C. Yuan, L. Zhang, L. Hou, G. Pang and W. C. Oh, RSC Adv., 2014, 4, 14408–14413.
- 14. R. Wang, X. Yan, J. Lang, Z. Zheng and P. Zhang, J. Mater. Chem. A, 2014, 2, 12724–12732.
- 15. C. Ji, J. Bi, S. Wang, X. Zhang and S. Yang, J. Mater. Chem. A, 2016, 4, 2158-2168.
- 16. X. F. Lu, D. J. Wu, R. Z. Li, Q. Li, S. H. Ye, Y. X. Tong and G. R. Li, J. Mater. Chem. A, 2014, 2, 4706–4713.
- S. E. Moosavifard, M. F. El-Kady, M. S. Rahmanifar, R. B. Kaner and M. F. Mousavi, ACS Appl. Mater. Interfaces, 2015, 7, 4851–4860.