## **Supporting Information**

## Ultrasmall SnS<sub>2</sub> Nanoparticles Anchoring on Well-Distributed Nitrogen-Doped Graphene Sheets for Li-Ion and Na-Ion Batteries

Yong Jiang,<sup>a</sup> Yazhi Feng,<sup>a</sup> Baojuan Xi,<sup>a,\*</sup> Shuangshuang Kai,<sup>a</sup> Kan Mi,<sup>a</sup> Jinkui Feng,<sup>a</sup> Junhao Zhang,<sup>b</sup> and Shenglin Xiong<sup>a,\*</sup>

<sup>a</sup> Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, and

School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100,

PR China

Correspondence and requests for materials should be addressed to S.L.X. (Email: <u>chexsl@sdu.edu.cn</u>) or B.J.X. (Email: <u>baojuanxi@sdu.edu.cn</u>)

<sup>b</sup> School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhejiang, Jiangsu, 212003, P.R. China



Figure S1. Raman spectra of  $SnS_2$ -GN,  $SnS_2$ -NGS, and GO.



Figure S2. TGA profiles of  $SnS_2$ -NGS (A) and  $SnS_2$ -GN (B).



Figure S3. The overall XPS spectrum of  $SnS_2$ -NGS hybrids.



Figure S4. High-magnification SEM (A) and TEM (B) images of  $SnS_2$ -NGS.



**Figure S5.** Cycling performance of the pure  $SnS_2$  electrode for LIBs at 0.8 A g<sup>-1</sup>, being cycled at 0.2 A g<sup>-1</sup> for the first five cycles.

| Sample                       | Current density       | Cycle number | Final capacity          | Current density      | Capacity   | Reference |
|------------------------------|-----------------------|--------------|-------------------------|----------------------|------------|-----------|
|                              | [mA g <sup>-1</sup> ] |              | [mA h g <sup>.1</sup> ] | [A g <sup>-1</sup> ] | [mA h g⁻¹] |           |
| SnS₂-NGS                     | 200                   | 120          | 1407                    | 10                   | 200        | This work |
|                              |                       |              |                         | 5                    | 520        |           |
| SSG                          | 120                   | 60           | 564                     | 3                    | 242        | [1]       |
| SnS₂/GNS                     | 100                   | 30           | 1114                    | 1                    | 870        | [2]       |
| TSG                          | 100                   | 200          | 1005                    | 2                    | 612        | [3]       |
| SnS <sub>2</sub> -RGO        | 66                    | 40           | 896                     |                      |            | [4]       |
| RGO-SnS₂                     | 322                   | 80           | 405                     | 3.225                | 200        | [5]       |
| SnS <sub>2</sub> /G-As       | 50                    | 30           | 656                     | 1                    | 240        | [6]       |
| SnS₂nanocrystals@RGO         | 64.5                  | 200          | 1034                    | 6.45                 | 300        | [7]       |
| SnS <sub>2</sub> /GNS-RS     | 58.4                  | 50           | 577                     |                      |            | [8]       |
| FL-SnS₂/G                    | 100                   | 50           | 920                     | 1                    | 600        | [9]       |
| G-SnS₂-S                     | 50                    | 30           | 650                     | 6.4                  | 230        | [10]      |
| SnS₂@graphene                | 322                   | 200          | 504                     |                      |            | [11]      |
| SnS₂/VACNTs                  | 100                   | 100          | 551                     | 2                    | 223        | [12]      |
| MWCNT/SnS <sub>2</sub> NS    | 645                   | 100          | 432                     | 6.45                 | 420        | [13]      |
| SnS <sub>2</sub> /SWCNTs     | 1000                  | 100          | 509                     | 2                    | 498        | [14]      |
| SnS₂NS@MWCNTs-thin           | 100                   | 50           | below 600               | 0.5                  | 296.1      | [15]      |
| SnS₂ nanoplates              | 200                   | 30           | 935                     | 5                    | 370        | [16]      |
| SnS₂ microspheres            | 650                   | 100          | 570                     | 6.5                  | 264        | [17]      |
| SnS₂ flowers (II)            | 64.5                  | 50           | 557                     |                      |            | [18]      |
| SnS₂ -200-10.5               | 100                   | 50           | 521                     | 3                    | 340        | [19]      |
| flower-like SnS <sub>2</sub> | 100                   | 100          | 549.5                   | 1                    | 210.8      | [20]      |

Table S1. Comparison of electrochemical abilities of SnS<sub>2</sub>-based anodes for LIBs.

[1] J. Yin, H. Cao, Z. Zhou, J. Zhang, M. Qu, *J. Mater. Chem.* **2012**, *22*, 23963–23970.

[2] L. Zhuo, Y. Wu, L. Wang, Y. Yu, X. Zhao, F. Zhao, RSC Advances, 2012, 2, 5084–5087.

[3] Q. Zhang, R. Li, M. Zhang, B. Zhang, X. Gou, *Electrochimica Acta* **2014**, *115*, 425–433.

[4] P. Chen, Y. Sun, H. Liu, Y. Wang, ACS Appl. Mater. Interfaces. 2013, 5, 12073–12082.

[5] L. Ji, H. L. Xin, T. R. Kuykendall, S.-L. Wu, H. Zheng, M. Rao, E. J. Cairns, V. Battaglia, Y. Zhang, *Phys. Chem. Chem. Phys.* **2012**, *14*, 6981–6986.

[6] X. Jiang, X. Yang, Y. Zhu, J. Shen, K. Fan, C. Li, *Journal of Power Sources* **2013**, 237, 178-186.

[7] L. Mei, C. Xu, T. Yang, J. Ma, L. Chen, Q. Li, T. Wang, *J. Mater. Chem. A*, **2013**, *1*, 8658–8664.

[8] M. Sathish, S. Mitani, T. Tomai, I. Honma, J. Phys. Chem. C 2012, 116, 12475-12481.

[9] K. Chang, Z. Wang, G. Huang, H. Li, W. Chen, J. Y. Lee, *Journal of Power Sources* **2012**, *201*, 259–266.

[10] B. Luo, Y. Fang, B. Wang, J. Zhou, H. Song, L. Zhi, *Energy Environ. Sci.* **2012**, *5*, 5226–5230.

[11] Z. Jiang, C. Wang, G. Du, J. Z. Jiang, J. Mater. Chem. 2012, 22, 9494–9496.

[12] W. Deng, X. Chen, Z. Liu, A. Hu, Q. Tang, Z. Li, Y. Xiong, *Journal of Power Sources* **2015**, 277, 131-138.

[13] J.-G. Kang, G.-H. Lee, K.-S. Park, S.-O. Kim, S. Lee, D.-W. Kim, J.-G. Park, *J. Mater. Chem.* **2012**, 22, 9330–9337.

[14] Y. Liu, C. Wang, H. Yang, Z.-J. Shi, F.-Q. Huang, *Materials Letters* 2015, 159, 329–332.

[15] C. Zhai, N. Du, H. Zhang, J. Xu, D. Yang, ACS Appl. Mater. Interfaces 2011, 3, 4067–4074.

[16] Y. Du, Z. Yin, X. Rui, Z. Zeng, X.-J. Wu, J. Liu, Y. Zhu, J. Zhu, Q. Yan, H. Zhang, *Nanoscale*, 2013, 5, 1456–1459.

[17] J. Zai, K. Wang, Y. Su, X. Qian, J. Chen, *Journal of Power Sources* 2011, *196*, 3650–3654.
[18] M. K. Jana, H. B. Rajendra, A. J. Bhattacharyya, K. Biswas. *CrystEngComm*, 2014, *16*, 3994–4000.

[19] L. Wang, L. Zhuo, Y. Yu, F. Zhao, *Electrochimica Acta* 2013, 112, 439–447.

[20] Q. Wu, L. Jiao, J. Du, J. Yang, L. Guo, Y. Liu, Y. Wang, H. Yuan, *Journal of Power Sources* 2013, 239, 89-93.