Supplementary Information

Robust Vanadium Pentoxide Electrodes for Sodium and Calcium Ion

Batteries: Thermodynamic and Diffusion Mechanical Insights

Da Wang,^a Hao Liu,^b Joshua Daivd Elliott,^c Li-Min Liu, *^a Woon-Ming Lau*^{ab} ^aBeijing Computational Science Research Center, Beijing 100084, China ^bChengdu Green Energy and Green Manufacturing Technology R&D Center, Chengdu Development Center of Science and Technology of CAEP, Chengdu, Sichuan, 610207, China

^cStephenson Institute for Renewable Energy & Department of Chemistry, University of Liverpool, Liverpool, L69 7ZF, United Kingdom

*Corresponding author. E-mail address: <u>limin.liu@csrc.ac.cn</u>; Tel: 86-10-82687086 *Corresponding author. E-mail address: <u>llau22@uwo.ca</u>; Tel: 86-21-56331480

Section 1: The effect of U values on the energetic and electronic properties of V_2O_5 . Three U values (U = 2.45¹, 3.1² and 4.0 eV³) were taken into consideration. The calculated formation energies for Ca_xV₂O₅ by using these three U values are very similar (Fig. S1). Previous theoretical calculations⁵ predicted that δ -CaV₂O₅ is about 0.27 eV per formula unit more stable than α -CaV₂O₅, in agreement with the fact that α -CaV₂O₅ can be synthesized experimentally^{6, 7}. However, the energy difference between α -CaV₂O₅ and δ -CaV₂O₅ by PBE+vdW+U are quite similar with the relatively large U values (U = 3.1 and 4.0 eV). On the other hand, the calculated band gap with U = 2.45 eV is 2.05 eV (Fig. S2), which is smaller than the experimental value of ~2.35 eV⁴. As the value of U increases to 4.0 eV, the band gap becomes 2.31 eV, which is more close to the experimental value. Thus, a Hubbard U correction of 4.0 eV is added on the vanadium *d*-electrons to obtain the energetic properties in our study.

Fig. S1 The formation energies $(\Delta_f E_x)$ as a functional of Ca concentration, which were calculated by PBE+vdW+U, where (a) U = 2.45 eV, (b) U = 3.1 eV, (c) U = 4.0 eV, as well as by (d) PBE+U (4.0 eV). The blue and yellow solid lines indicate the formation energies of the α -phase and δ phase, respectively. The same numbers in (c) and (d) indicate the same Ca-intercalation configurations calculated by vdW correction and non-vdW correction, respectively.

Fig. S2 The total density of states (DOS) of α -V₂O₅ calculated by PBE+vdW+U with (a) U=2.45 eV, (b) U=3.1 eV and (c) U=4.0 eV, respectively. The band energies are obtained by aligning the orbital energies with respect to the vacuum level.

Section 2: Na/Ca-V₂O₅ ground state hull. Since the intercalation ordering would vary for different Na/Ca concentrations, some strategies were followed to explore the structural evolution of α - and δ -V₂O₅ in the intercalation process. Here we take Na in α -V₂O₅ as an example, the supercell with 84 (V₂₄O₆₀) atoms was used to explore the structural evolution, and six positions (A1, A2, A3 and B1, B2, B3) could be found for Na/Ca intercalated in a single channel (Fig. S3). Thus, with the consideration of point group symmetry, one (One atom intercalation, A_x or B_x , x=1, 2, 3), three (Two atoms intercalation, A₁+A₂, A₁+B₁, A₁+B₂), three (Three atoms intercalation, A₁+A₂+A₃, $A_1+A_2+B_1$, $A_1+A_2+B_2$), three (Four atoms intercalation, the same as the case of two atom intercalation), one (Five atoms intercalation, the same as the case of one atom intercalation) and one (Full occupation) different configurations could be found for Na/Ca intercalation into a single channel at the concentration of 0.083, 0.167, 0.25, 0.333, 0.417 and 0.5, respectively. The most stable configurations of Na/Ca to intercalated into a single channel at each of the concentrations was determined. For this, only different ways of stacking with the fixed minimum energy arrangements in each channel were calculated to explore the most stable configuration of Na/Ca-ions intercalated into all galleries. As a result, 43 configurations were used to study the process of Na intercalation into α -V₂O₅, as the blue squares shown in Fig. S4a. Ultimately, the above procedure was also employed for Na intercalation into δ -V₂O₅ and Ca intercalation into α - and δ -V₂O₅. A total of 172 configurations were calculated to explore the α - and δ -Na_x/Ca_xV₂O₅ ground state hulls in our study, as shown in Fig. S4.

Notably, the previous theoretical calculations with PBE+U predicted that δ -CaV₂O₅ is more stable than α -CaV₂O₅,⁵ in agreement with the fact that α -CaV₂O₅ can be synthesized experimentally^{6, 7}. Carrasco et al.⁸ also suggested that that PBE+U could describe the right stability without the addition of vdW interactions, at the expense of precise lattice parameters. In order to check this, further calculations are performed. As shown in Figure S1(c) and (d), the PBE+U without including vdW shows that α -

 CaV_2O_5 is about 0.207 eV per formula unit more stable than δ -CaV₂O₅, consistent with other theoretical and experimental studies⁵⁻⁷. Thus, PBE+U could describe the right relative stability for the α -CaV₂O₅ and δ -CaV₂O₅.

Fig. S3 Schematic illustration of different positions for Na/Ca storage in α -V₂O₅

Fig. S4 The ground state hull of (a) Na and (b) Ca in both α - and δ -V₂O₅. The formation energy per formula unit (${}^{\Delta}_{f}E_{x}$) has been plotted with respect to Na/Ca concentration.

Section 3: The effect of exchange-correlation functionals on the migration behavior of V_2O_5 . We have investigated the Ca migration properties at the dilute concentration (charged state) by GGA+U functional, the calculated energy barriers were shown in Fig. S5. The results for different U (= 2.45, 3.1 and 4.0 eV) are quite

similar (~ 0.85 eV) with relatively less variation. This is significantly lower than the full intercalation state due to the high Coulomb repulsion between alkali-ions at high concentration. Ca migration in bulk δ -V₂O₅ has an even smaller barrier (about 0.2 eV) as reported by Gautam⁵ and Rong⁹, this could be attributed to their different choice of NEB calculation method. It was suggested that the pronounced metastability of the electronic states along the ion migration path with DFT+U simulation would result in the poor computational convergence. Thus, the standard GGA was used for the NEB calculations in their work. For comparison we also calculate the Ca diffusion barrier using a standard GGA functional instead of the GGA+U functional. A barrier of 0.46 eV was found for Ca migration in bulk δ -V₂O₅ at the dilute concentration. This is comparable with the ~0.2 eV barrier reported by Gautam and Rong, and indicates more promising Ca migration in δ phase than in the α phase. The small difference could be attributed to the different vdW functional (vdW-DF was used in our work and vdW-DF2 was used in Gautam and Rong's work) and different Hubbard U correction (2.45 eV in our calculation and 3.1 eV in Gautam and Rong's work) used in the NEB calculations.

Fig. S5 The energy barriers of dilute Ca diffusion in δ -V₂O₅ which is calculated by GGA (Red), GGA+U(=2.45 eV) (Blue), GGA+U(=3.1 eV) (Green) and GGA+U(=4.0 eV) (Yellow) functionals, respectively.

Section 4: The relativistic effect in V₂O₅ systems. In order to account for relativistic effects in the systems, we have calculated the band gap of α - and δ -V₂O₅ including the spin-orbit coupling (SOC), as shown in the figure and table below. The results for the α - and δ -V₂O₅ phases are very similar. All the bands at the Γ and T points are spin split, where the spin-orbit splitting at the top of the VB (T point) was 117 meV for α -V₂O₅ and 202 meV for δ -V₂O₅. The same splittings for the CB vary from 56 meV for α -V₂O₅ to 108 meV for δ -V₂O₅, which are smaller than those of the VB, but definitely large enough so as to be observed. Despite this discrepancy, these two methods provide a similar electronic trend, *e.g.*, the spin-orbit splitting predicted by PBE+U+SOC methods are comparable in different V₂O₅ are based on the PBE+U functional in our study.

Fig. S6 Electron energy band structures of α -V₂O₅ calculated by PBE+U functional: a) bands calculated without SOC, b) bands calculated with SOC.

Table S1 The spin-orbit splitting Δn (n labeled bands, see the above figure) at the CB and VB calculated for α - and δ -V₂O₅ with the PBE+U+SOC.

Method		С	V	V-1	V-2
DFT/DFT+SOC	α -V ₂ O ₅	56	117	-32	-19
$\Delta_n(\mathbf{K}) (\mathrm{meV})$					

Reference

- J. Spitaler, E. Y. Sherman, H. Evertz and C. Ambrosch-Draxl, *Phys. Rev. B*, 2004, 70, 125107.
- A. Jain, G. Hautier, S. P. Ong, C. J. Moore, C. C. Fischer, K. A. Persson and G. Ceder, *Phys. Rev. B*, 2011, 84, 045115.
- D. O. Scanlon, A. Walsh, B. J. Morgan and G. W. Watson, J. Phys. Chem. C, 2008, 112, 9903-9911.
- 4. N. V. Hieu and D. Lichtman, J. Vac. Sci. Technol., 1981, 18, 49-53.
- G. S. Gautam, P. Canepa, R. Malik, M. Liu, K. Persson and G. Ceder, *Chem. Commun.*, 2015, **51**, 13619-13622.
- 6. M. Onoda and N. Nishiguchi, J. Solid State Chem., 1996, 127, 359-362.
- Z. V. Popović, M. J. Konstantinović, R. Gajić, V. N. Popov, M. Isobe, Y. Ueda and V. V. Moshchalkov, *Phys. Rev. B*, 2002, 65, 184303.
- 8. J. Carrasco, J. Phys. Chem. C, 2014, 118, 19599-19607.
- Z. Rong, R. Malik, P. Canepa, G. Sai Gautam, M. Liu, A. Jain, K. Persson and G. Ceder, *Chem. Mater.*, 2015, 27, 6016-6021.