Supporting information

Belonging to the manuscript

Fluoride substitution in sodium hydride for thermal energy storage applications

Terry D. Humphries,* Drew A. Sheppard, Matthew R. Rowles, M. Veronica Sofianos, Craig. E. Buckley

Hydrogen Storage Research Group, Fuels and Energy Technology Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia

E-mail: terry_humphries81@hotmail.com

Table S1. Peak positions and corresponding Miller indices of the NaH_xF_{1-x} mixtures after Ball milling and annealing determined by Rietveld refinement of the SR-XRD data. Relative peak intensities in parentheses. $\lambda = 0.824890$ Å, 27 °C.

	Peak position (20)						
hkl	NaH	NaH _{0.95} F _{0.05}	NaH _{0.85} F _{0.15}	NaH _{0.7} F _{0.3}	NaH _{0.5} F _{0.5}	NaF	
111	16.83 (1)	16.89 (1)	17.01 (0.81)	17.24 (0.45)	17.31 (0.23)	17.74 (0.02)	
002	19.46 (0.64)	19.53 (0.85)	19.66 (1)	19.94 (1)	20.01 (1)	20.51 (1)	
022	27.65 (0.39)	27.75 (0.50)	27.95 (0.59)	28.34 (0.59)	28.45 (0.56)	29.16 (0.59)	
311	32.55 (0.37)	32.67 (0.37)	32.90 (0.32)	33.37 (0.20)	33.49 (0.10)	34.34 (0.02)	
222	34.04 (0.11)	34.16 (0.14)	34.41 (0.17)	34.90 (0.17)	35.03 (0.15)	35.91 (0.17)	

Table S2. Compositions of NaH_xF_{1-x} mixtures after Ball milling and annealing determined by Rietveld refinement of the SR-XRD data. $\lambda = 0.824890$ Å, 27 °C.

Sample	Composition (wt.%)			
	NaH _x F _{1-x}	NaOH		
NaH	88	12		
NaH _{0.95} F _{0.05}	91.0	9.0		
NaH _{0.85} F _{0.15}	90.5	9.5		
NaH _{0.7} F _{0.3}	88.6	11.4		
NaH _{0.5} F _{0.5}	96.3	3.7		
NaF	100	0		

S2

Fig. S1. Rietveld refinement plot of (a) NaH, (b) NaH_{0.95}F_{0.05}, (c) NaH_{0.85}F_{0.15}, (d) NaH_{0.7}F_{0.3}, (e) NaH_{0.5}F_{0.5} and (f) NaF. Experimental data as red circles, calculated diffraction pattern as black line and the difference plot in blue. Tick marks show positions for: (a - e) NaH_xF_{1-x} (top) and NaOH (bottom), respectively; (f) NaF. $\lambda = 0.824890$ Å, T = 27 °C.

Fig. S2. XRD patterns of NaH_{0.5}F_{0.5} mixtures annealed at various temperatures and atmospheres. * = Si internal standard. $\lambda = CuK_{\alpha}$.

Sample	Lattice Parameter (Å)	Wt.%	Composition ⁺
		(%)	
NaH (as supplied)*	4.88166(5)	95.44(1)	NaH
	NA	3.221(8)	NaOH ^F
	NA	1.381(2)	Na
NaF (as supplied)*	4.633222(4)	100	NaF
NaH + NaF (50:50 mol.%) Ball milled*	4.8805(2)	27.5(2)	NaH
	NA	5.1(3)	NaOH [⊦]
	4.6326(1)	67.3(3)	NaF
30 bar H ₂ , 300 °C, 72 h*	4.7647(4)	53.6(6)	NaH0.57F0.43
	4.6865(4)	39.7(6)	NaH _{0.25} F _{0.75}
	4.6266(2)	6.7(4)	NaF
30 bar H ₂ , 460 °C, 114 h	4.74362(8)	100	NaH _{0.5} F _{0.5}
1 bar H ₂ , 200 °C, 24 h	4.810(1)	29(1)	NaH _{0.76} F _{0.24}
	4.856(1)	4.2(9)	NaH _{0.95} F _{0.05}
	4.6317(1)	44(1)	NaF
	NA	14.4(5)	NaOH [⊢]
	NA	5.2(1)	Si
1 bar H ₂ , 200 °C, 24 h	4.8552(4)	13.2(6)	NaH0.95F0.05
	4.6334(1)	43.7(6)	NaF
	4.8171(5)	28.2(7)	NaH _{0.79} F _{0.21}
	NA	6.0(5)	NaOH ^F
	NA	8.8(1)	Si

Table S3. Lattice Parameters of $NaH_{0.5}F_{0.5}$ mixtures annealed at various temperatures and atmospheres. ESD's derived by Rietveld refinement are in parentheses.

⁺Composition determined by Eq 1 in main text. * No internal Si standard used for determination of lattice parameters so compositions may not be entirely accurate. ^F Presence of NaOH is most likely due to air exposure through PMMA XRD sample holder.

Fig. S3. SR-XRD patterns of NaH_{0.5}F_{0.5} between 18 and 22° 2 Θ along with profiles fitted during Reitveld refinement showing composition. $\lambda = 0.824890$ Å, T = 27 °C.

Fig. S4. Van't Hoff plots of $NaH_{0.5}F_{0.5}$ determined over the entire decomposition process by numerical fitting of the PCI data (method 2).

Fig. S5. Variation of ΔH and ΔS over the duration of Hydrogen desorption determined by numerical fitting of the PCI data (method 2).

Fig. S6. Composition of NaH_{0.5} $F_{0.5}$ as a function of temperature measured by *in situ* XRD during heating.

 $\int NaH_{1-x}F_x$ compositions were determined by correlation of the refined lattice parameters of data at specific temperatures. The thermal expansion of NaH, $NaH_{0.95}F_{0.05}$, $NaH_{0.85}F_{0.15}$, $NaH_{0.7}F_{0.3}$, $NaH_{0.5}F_{0.5}$ and NaF were measured by *in situ* XRD. The lattice parameters of each composite at a specific temperature were then treated by a quadratic expression to allow determination of any $NaH_{1-x}F_x$ composition at any temperature.

Fig. S7. Composition of $NaH_{0.5}F_{0.5}$ as a function of temperature measured by *in situ* XRD during cooling.