Supplementary Information

In-situ Formation of NiO on Ni Foam Prepared with a Novel Leaven

Dough Method as an Outstanding Electrocatalyst for Oxygen

Evolution Reaction

Jiyuan Liang,^{a,b} Yongzheng Wang,^c Chun-Chieh Wang,^a Shih-Yuan Lu^{*a}

Figure S1. XRD patterns of F127, $[Ni(H_2O)_6](NO_3)_2$, and $[Ni(H_2O)_{6-x}](NO_3)_2/F127$ dough.

Figure S2. Photo of Ni foam and green residues on Petri dish obtained through calcination of [Ni(H₂O)_{6-x}](NO₃)₂/F127 dough at 200 °C for 1 h in air.

Figure S3. (a) SEM image of Ni foam, (b) EDX spectrum of Ni foam and elemental mapping images of (c) Ni and (d) O.

Figure S4. Photos of Ni foam (a) after being compressed into a disk and (b) the disk being further bent.

Figure S5. SEM images of (a) commercial Ni foam and (b) as-prepared Ni foam.

Figure S6. (a) SEM image and XRD pattern of Ni foam prepared at precursor composition of 0.5 g F127 and 2.9 g [Ni(H₂O)₆](NO₃)₂.

Figure S7. Photos of NiO/Ni prepared at calcination temperatures from 300 to 500 °C.

Figure S8. SEM images and zoom-in images of (a,d) NiO/Ni-400, (b,e) NiO/Ni-450, and (c,f) NiO/Ni-500.

Figure S9. DTA curve of green residues.

Figure S10. Photos of (a) $[Ni(H_2O)_6](NO_3)_2$ and (b) F127 in oven set at 80 °C after 12 h.

Figure S11. Photos of $[Ni(H_2O)_{6-x}](NO_3)_2/F127$ dough (a) at 80 °C and (b) at room temperature for 3 h.

Tuble S1. Comparison of Millset, Mill, and Tuble Steper. Present Work (S. Meratare				
Catalysts	$\eta_{ m onset}$ /	η_{10} /	Tafel slope	Reference
	mV	mV	/	
			mV/dec	
NiO/Ni-350	268	345	53	This work
3D NiO/Ni foam		390	80	[S1]
NiO nanowire/FTO	355	363		[S2]
NiO sheet/carbon cloth	295		116	[S3]
Ni foam/porous carbon/anodized	294	534	-	[S4]
Ni				
RuO_2		266	62	[S5]
IrO ₂ /Ni foam		310	79	[S6]
MnO ₂ /Ni foam	270	287	86	[S6]
Co ₃ O ₄ /mildly oxidized	280	390	-	[S7]
multiwalled				
carbon nanotubes				
CoFe ₂ O ₄ /graphene	274	464	-	[S8]
NiCo ₂ O ₄ -graphene	328	458	161	[S9]

Table S1. Comparison of η_{onset} , η_{10} , and Tafel slope: present work *vs*. literature

Supporting Information References

[S1]G.-Q. Han, Y.-R. Liu, W.-H. Hu, B. Dong, X. Li, X. Shang, Y.-M. Chai, Y.-Q. Liu and C.-G. Liu, *Appl. Surf. Sci.*, 2015, **359**, 172-176.

[S2]P. Manivasakan, P. Ramasamy and J. Kim, RSC Adv., 2015, 5, 33269-33274.

[S3]N. Cheng, Q. Liu, J. Tian, X. Sun, Y. He, S. Zhai and A. M. Asiri, *Int. J. Hydrogen Energy*, 2015, **40**, 9866-9871.

[S4]J. Wang, H. X. Zhong, Y. L. Qin and X. B. Zhang, *Angew. Chem. Int. Ed.*, 2013, 52, 5248-5253.

[S5]W. Zhao, C. Zhang, F. Geng, S. Zhuo and B. Zhang, *ACS Nano*, 2014, **8**, 10909-10919.

[S6]M. Q. Yu, Y. H. Li, S. Yang, P. F. Liu, L. F. Pan, L. Zhang and H. G. Yang, J. Mater. Chem. A, 2015, 3, 14101-14104.

[S7]X. Lu and C. Zhao, J. Mater. Chem. A, 2013, 1, 12053-12059.

[S8]W. Bian, Z. Yang, P. Strasser and R. Yang, J. Power Sources, 2014, 250, 196-203.

[S9]D. U. Lee, B. J. Kim and Z. Chen, J. Mater. Chem. A, 2013, 1, 4754-4762.