Supporting information

Effects of the structural optimization on the performance of dye-sensitized solar cells: spirobifluorene as a promising building-block to enhance V_{oc}

Hai-Lang Jia,^a Ming-Dao Zhang,^b Wei-Yan,^a Xue-Hai Ju^c and He-Gen Zheng*^a

^{*a*}State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (P. R. China).

^bSchool of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (P. R. China).

^cSchool of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (P. R. China).

General information

All solvents were treated by standard methods before use and all chemicals were purchased from commercial suppliers and used without further purification unless indicated otherwise. N, N-Dimethylformamide (DMF) and tetrahydrofuran (THF) were dried and distilled from CaH₂.

The ¹H NMR and ¹³C NMR spectra were recorded on a Bruker DRX (300, 400 MHz) NMR spectrometer with tetramethylsilane (TMS) as the internal standard. The mass spectra were measured in ESI Mass Spectrometer (LCQ Fleet).

Synthesis of the dyes

Scheme S1 synthesis procedure of JA3, JA4 and JA0. Reagents and conditions: a) Pd(PPh₃)₄, K₂CO₃, H₂O, 1, 4dioxane, 90°C; b) bis(pinacolato)diboron, Pd(dppf)Cl₂, KOAc, DMF, 80°C; c) Methyl 4-boronobenzoate, Pd(PPh₃)₄, K₂CO₃, H₂O, 1, 4-dioxane, 90°C; d) Pd(PPh₃)₄, K₂CO₃, H₂O, 1, 4-dioxane, 90°C; e) i: TBAF, THF; ii: Pd₂(dba)₃, AsPh₃, Et₃N, THF, reflux; f) i: TBAF, THF; ii: Pd₂(dba)₃, AsPh₃, Et₃N, THF, reflux; iii: EtOH, H₂O, NaOH; g) i: Pd(PPh₃)₄, K₂CO₃, H₂O, 1, 4-dioxane, 90°C; ii: EtOH, H₂O, NaOH.

Synthesis of compound 3

Under an nitrogen, compound **5** (8 g, 17 mmol), compound **2** (7.5 g, 17 mmol), K_2CO_3 (7.1 g, 51 mmol) and Pd(PPh_3)_4 (0.98 g, 0.85 mmol) were dissolved in 1, 4dioxane (100 mL) and H₂O (20 mL). The mixture was heated under 90°C for overnight. The reaction mixture was cooled to room temperature and extracted by EtOAc (3×100 mL). The combined organic layers were washed with brine, dried over MgSO₄, and evaporated in vacuo. The residue was purified by silica gel column chromatography (PE/EA=10/1) to give the compound **3** (4 g, 33%). ¹H NMR (CDCl₃, 400 MHz) $\delta_{\rm H}$ 7.83-7.86 (m, 4H), 7.52-7.54 (m, 1H), 7.38 (t, *J* = 7.6Hz, 3H), 7.14-7.19 (m, 4H), 7.07-7.12 (m, 3H), 6.85 (s, 1H), 6.70-6.78 (m, 4H), 6.62 (d, *J* = 8Hz, 1H), 3.72 (s, 2H), 1.67-1.74 (m, 2H), 1.23-1.37 (m, 10H), 0.84 (t, *J* = 7.2Hz, 3H). MS (ESI): Calcd for C₄₅H₃₈BrNS, 703.19; found, 703.75.

Synthesis of compound 4

A mixture of compound **3** (2.5 g, 3.55 mmol), bis(pinacolato)diboron (1.35 g, 5.32 mmol) and KOAc (1.04 g, 10.64 mmol) in DMF (40 mL) was added Pd(dppf)Cl₂ (0.29 g, 0.35 mmol) under dinitrogen. The mixture was heated under 80°C for overnight. The reaction mixture was cooled to room temperature and H₂O (150 mL) was added, the mixture was extracted by EtOAc (3×50 mL). The combined organic layers were washed with brine, dried over MgSO₄, and evaporated in vacuo. The residue was purified by silica gel column chromatography (PE/EA=10/1) to give the compound **4** (2 g, 75%).¹H NMR (CDCl₃, 300 MHz) $\delta_{\rm H}$ 7.84-7.90 (m, 4H), 7.47-7.59 (m, 2H), 7.40 (t, *J* = 6.9Hz, 2H), 7.10-7.20 (m, 4H), 6.92-7.06 (m, 3H), 6.89 (s, 1H), 6.73-6.83 (m, 5H), 3.81 (t, *J* = 6.3Hz, 2H), 1.74-1.78 (m, 2H), 1.26-1.46 (m, 22H), 0.85-0.91 (m, 3H). MS (ESI): Calcd for C₅₁H₅₀BNO₂S, 751.36; found, 752.42.

Synthesis of compound 6

Under an nitrogen, compound 5 (5 g, 17 mmol), Methyl 4-boronobenzoate (3.1 g,

17 mmol), K₂CO₃ (7.1 g, 51 mmol) and Pd(PPh₃)₄ (0.98 g, 0.85 mmol) were dissolved in 1, 4-dioxane (100 mL) and H₂O (20 mL). The mixture was heated under 90 °C for overnight. The reaction mixture was cooled to room temperature and extracted by EtOAc (3×50 mL). The combined organic layers were washed with brine, dried over MgSO₄, and evaporated in vacuo. The residue was purified by silica gel column chromatography (PE/EA=4/1) to give the compound **6** (2 g, 34%). ¹H NMR (CDCl₃, 400 MHz) $\delta_{\rm H}$ 8.19 (d, *J* = 8.4Hz, 2H), 7.94-7.99 (m, 3H), 7.64 (d, *J* = 7.6 Hz, 1H), 3.97 (s, 3H).

Synthesis of compound 8

Under an nitrogen, compound **4** (1 g, 1.33 mmol), compound **7** (1.21 g, 0.93 mmol)^[S11], K₂CO₃ (0.55 g, 3.99 mmol) and Pd(PPh₃)₄ (0.15 g, 0.13 mmol) were dissolved in 1, 4-dioxane (50 mL) and H₂O (10 mL). The mixture was heated under 90°C for overnight. The reaction mixture was cooled to room temperature and extracted by CH₂Cl₂ (3×20 mL). The combined organic layers were washed with brine, dried over MgSO₄, and evaporated in vacuo. The residue was purified by silica gel column chromatography (PE/DCM=4/1) to give the compound **8** as a green solid (1.9 g, 78%). ¹H NMR (CDCl₃, 400 MHz) $\delta_{\rm H}$ 9.63 (d, *J* = 4.8Hz, 2H), 8.84 (d, *J* = 4.8Hz, 2H), 8.74 (d, *J* = 4.8Hz, 2H), 8.70 (d, *J* = 4.8Hz, 2H), 7.74-7.80 (m, 6H), 7.61 (t, *J* = 8.4Hz, 2H), 7.50 (d, *J* = 6.8Hz, 1H), 7.19-7.28 (m, 5H), 7.12 (s, 1H), 7.01 (t, *J* = 7.2Hz, 4H), 6.83-6.89 (m, 5H), 6.70 (d, *J* = 7.2Hz, 2H), 6.62 (d, *J* = 7.6Hz, 1H), 3.94 (s, 2H), 3.72 (s, 8H), 1.90 (s, 2H), 1.44-1.49 (m, 2H), 1.12-1.38 (m, 29H), 0.78-0.86 (m, 11H), 0.63-0.69 (m, 8H), 0.29-0.51 (m, 44H). MS (ESI): Calcd for C₁₂₀H₁₄₁N₅O₄SSiZn, 1840.97; found, 1841.75.

Synthesis of JA3

To a solution of compound **8** (500 mg, 0.27 mmol) in anhydrous THF (20 mL) was added TBAF (0.6 mL, 1 M in THF). The solution was stirred at room temperature for 30 min under dinitrogen. The mixture was quenched with H_2O and then extracted

with CH₂Cl₂. The organic layer was dried over anhydrous MgSO₄ and the solvent was removed under reduced pressure. The residue and 4-iodobenzoic acid (270 mg, 1.09 mmol) were dissolved in a mixture of anhydrous THF (50 mL) and Et₃N (12 mL) underdinitrogen, then Pd₂(dba)₃ (75 mg, 0.081 mmol) and AsPh₃ (166 mg, 0.542 mmol) were added to the mixture. The solution was refluxed for 6 h. The solvent was removed under reduced pressure and was purified by silica gel column chromatography (DCM/MeOH=20/1), then recrystallization from MeOH/Ether to give dye **JA3** as a green solid (230 mg, 47%). ¹H NMR (THF- d_8 , 300 MHz) δ_H 9.69 (d, J = 4.5Hz, 2H), 8.81 (d, J = 4.5Hz, 2H), 8.65-8.69 (m, 4H), 8.37 (d, J = 7.8Hz)2H), 7.98-8.02 (m, 2H), 7.85-7.91 (m, 6H), 7.66 (t, J = 8.7Hz, 3H), 7.23-7.37 (m, 6H), 7.02-7.11 (m, 8H), 6.92 (s, 1H), 6.70 (d, J = 6.5Hz, 2H), 6.63 (d, J = 7.8Hz, 1H), 4.11 (t, J = 6.6Hz, 2H), 3.85 (s, 8H), 1.94-2.02 (m, 2H), 1.54-1.63 (m, 2H), 1.30-1.46 (m, 28H), 0.87-0.97 (m, 18H), 0.75-0.82 (m, 8H), 0.57-0.67 (m, 37H). ¹³C NMR (THF-d₈, 75 MHz) δ_C 161.24, 152.87, 151.97, 151.28, 150.74, 150.30, 149.96, 145.51, 143.03, 142.66, 141.97, 141.04, 139.49, 139.23, 136.30, 134.49, 133.82, 132.59, 131.83, 131.65, 131.49, 131.28, 131.11, 130.60, 129.81, 128.74, 127.68, 127.16, 126.48, 126.20, 124.99, 123.90, 123.40, 122.73, 122.34, 122.02, 121.39, 121.01, 120.02, 116.70, 115.15, 114.02, 106.58, 105.66, 104.65, 98.78, 96.09, 95.93, 69.14, 48.48, 32.97, 32.63, 30.48, 29.94, 29.87, 28.04, 23.73, 23.40, 14.66, 14.51. MS (ESI): Calcd for C₁₁₈H₁₂₅N₅O₆SZn, 1804.86; found, 1803.83.

Synthesis of JA4

To a solution of compound **8** (500 mg, 0.27 mmol) in anhydrous THF (20 mL) was added TBAF (0.6 mL, 1 M in THF). The solution was stirred at room temperature for 30 min under dinitrogen. The mixture was quenched with H_2O and then extracted with CH_2Cl_2 . The organic layer was dried over anhydrous MgSO₄ and the solvent was removed under reduced pressure. The residue and compound **6** (284 mg, 0.81 mmol) were dissolved in a mixture of anhydrous THF (50 mL) and Et₃N (12 mL) underdinitrogen, then $Pd_2(dba)_3$ (75 mg, 0.081 mmol) and AsPh₃ (166 mg, 0.542 mmol) were added to the mixture. The solution was refluxed for 6 h. The solvent was

removed under reduced pressure and was purified by silica gel column chromatography (PE/DCM=4/1), then the residue was added in EtOH (10 mL), THF (20 mL) and H₂O (30 mL), and then added NaOH (0.29 g, 7.31 mmol). The mixture was heated under 90°C for overnight. The reaction mixture was cooled to room temperature and the solvent was evaporated, the residue was acidified with diluted HCl, then filtered and recrystallization from MeOH/Ether to give dye JA4 as a brown solid (200 mg, 38%). ¹H NMR (THF- d_8 , 300 MHz) $\delta_{\rm H}$ 10.07 (d, J = 4.5Hz, 2H), 8.83-8.91 (m, 2H), 8.73-8.80 (m, 2H), 8.62-8.67 (m, 2H), 8.52 (d, J = 4.5Hz, 1H), 8.37-8.39 (m, 1H), 8.28-8.33 (m, 2H), 8.21 (d, J = 8.1Hz, 2H), 8.11-8.16 (m, 2H), 8.03 (d, J = 8.1Hz, 1H), 7.87-7.96 (m, 4H), 7.79-7.84 (m, 3H), 7.63-7.73 (m, 3H), 7.33-7.38 (m, 3H), 7.04-7.13 (m, 8H), 6.73-6.76 (m, 2H), 6.68 (d, *J* = 7.5Hz, 1H), 4.54 (s, 2H), 3.88 (s, 8H), 2.13-2.20 (m, 2H), 1.47-1.51 (m, 2H), 1.30-1.40 (m, 8H), 0.85-0.92 (m, 26H), 0.51-0.72 (m, 37H). ¹³C NMR (THF- d_8 , 75 MHz) δ_C 161.27, 157.46, 154.51, 153.42, 152.39, 152.17, 151.58, 151.49, 150.93, 150.38, 149.91, 143.08, 142.57, 142.32, 140.44, 138.80, 138.70, 138.29, 136.91, 135.29, 133.06, 131.80, 130.83, 130.15, 129.82, 128.77, 128.08, 127.67, 127.46, 125.71, 125.03, 122.95, 122.16, 121.62, 121.07, 117.49, 115.92, 114.81, 106.76, 105.67, 104.64, 97.84, 92.84, 69.16, 48.70, 32.99, 32.62, 30.52, 29.89, 27.78, 26.45, 23.73, 23.40, 14.66, 14.46. MS (ESI): Calcd for C₁₂₄H₁₂₇N₇O₆S₂Zn, 1938.86; found, 1938.33.

Synthesis of JA0

Under an nitrogen, compound **4** (0.5 g, 0.67 mmol), compound **6** (0.18 g, 0.53 mmol), K₂CO₃ (0.28 g, 2.0 mmol) and Pd(PPh₃)₄ (77 mg, 0.07 mmol) were dissolved in 1, 4-dioxane (20 mL) and H₂O (10 mL). The mixture was heated under 90°C for overnight. The reaction mixture was cooled to room temperature and extracted by CH_2Cl_2 (3×20 mL). The combined organic layers were washed with brine, dried over MgSO₄, and evaporated in vacuo, the residue was purified by silica gel column chromatography (PE/CH₂Cl₂ = 4/1). After evaporated in vacuo, then the residue was added in EtOH (10 mL), THF (20 mL) and H₂O (30 mL), and then added NaOH (0.27

g, 6.65 mmol). The mixture was heated under 90°C for overnight. The reaction mixture was cooled to room temperature and the solvent was evaporated, the residue was acidified with diluted HCl, then filtered and recrystallization from MeOH/Ether to give dye **JA0** as a red solid (320 mg, 54%). ¹H NMR (DMSO- d_6 , 400 MHz) $\delta_{\rm H}$ 13.16 (s, 1H), 8.01-8.12 (m, 8H), 7.92 (d, J = 7.6Hz, 1H), 7.84 (d, J = 7.2Hz, 1H), 7.77-7.79 (m, 1H), 7.73 (d, J = 2.0Hz, 1H), 7.62-7.67 (m, 1H), 7.37-7.42 (m, 3H), 7.09-7.18 (m, 5H), 7.03 (d, J = 8.8Hz, 1H), 6.84-6.88 (m, 1H), 6.78 (s, 1H), 6.63-6.68 (m, 2H), 6.60 (d, J = 7.6Hz, 1H), 3.79 (s, 2H), 1.58-1.63 (m, 2H), 1.26-1.31 (m, 2H), 1.05-1.21 (m, 8H), 0.74 (t, J = 6.8Hz, 3H). ¹³C NMR (DMSO- d_6 , 75 MHz) $\delta_{\rm C}$ 167.63, 153.47, 149.36, 148.87, 148.48, 144.68, 143.52, 141.65, 141.18, 140.72, 138.91, 134.24, 131.80, 130.88, 129.77, 129.36, 128.30, 127.22, 124.92, 123.84, 120.90, 65.84, 46.84, 31.39, 30.76, 28.92, 28.80, 26.36, 22.33, 14.20. MS (ESI): Calcd for C₅₈H₄₅N₃O₂S₂, 879.29; found, 879.17.

Fig. S1 Emission spectra of JA0, JA3 and JA4 in THF.

Fig. S2 Absorption spectra of **JA0**, **JA3** and **JA4** anchored on TiO₂ films with and without CDCA (10 mM).

Fig. S3 Cyclic voltammogram of **JA0**, **JA3** and **JA4** in DMF, 0.1 M TBAPF₆, glassy carbon electrode as working electrode, Pt as counter electrode, Ag/Ag⁺ as reference electrode, scan rate: 100 mV s⁻¹, calibrated with ferrocene/ferrocenium (Fc/Fc⁺) as an external reference.

Fig. S4 The normalized absorption spectra (solid lines) and emission spectra (broken lines) of JA0, JA3 and JA4.

Fig. S5 Fluorescence decay curves of dyes in THF (black line) and dyes adsorbed onto TiO₂ surface (red line), (a) **JA0**, (b) **JA3**, (c) **JA4**

References

[S1] A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin, M. Grätzel, *Science*, 2011, 334, 629.