Room-temperature processed, air-stable and highly-efficient graphene/silicon solar cells with organic interlayers

Dikai Xu, Xuegong Yu*, Dace Gao, bXinhui Mu, Mengyao Zhong, Shuai Yuan, Jiangsheng Xie, Wenying Ye, Jiabing Huang, Deren Yang

Supporting information

Extraction the values of series resistances of solar cells

The current density and voltage (*J-V*) under dark circumstance follow **Equation S1** when series resistance (R_s) is taken into account, ^{1,2}

$$J = J_0 \left(\exp\left(\frac{q(V - JR_s)}{nkT}\right) - 1 \right)$$
 (S1)

where J_s is the reversed saturation current density, T the absolute temperature (298 K) and V- JR_s the voltage applied across the Schottky solar cells. When $V - JR_s > 3kT/q$, the term of minors 1 can be ignored, then the J-V relation becomes as follows,

$$J = J_{\theta} \exp\left[\frac{q(V - JR_{s})}{nkT}\right]$$
 (S2)

Equation S2 is differentiated and rearranged into Equation S3.

$$\frac{dV}{d(\ln J)} = R_s A_{eff} J + \frac{nkT}{q}$$
 (S1.3)

Where A_{eff} is the effective area of Schottky solar cell. The value of R_s is obtained from the slope of $dV/d\ln J vs. J$ curves.

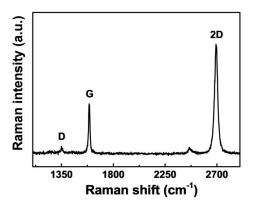


Figure S1. Raman spectrum of a Gr film.

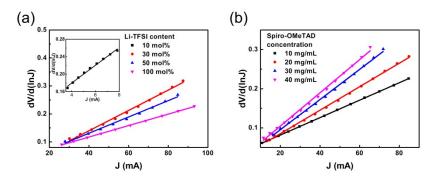


Figure S2. The dV/dlnJ vs. J curves of Gr/HTL/Si solar cells varying with (a) Li-TFSI contents and (b) concentration of spiro-OMeTAD solutions to extract the series resistances.

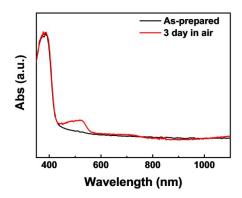


Figure S3. Absorption spectrum of spiro-OMeTAD thin film on glass.

Figure S4. XPS spectra corresponding to (a) O-1s and (b) N-1s core levels of (i) as-prepared spiro-OMeTAD thin films, (ii) Gr protected sample and bare spiro-OMeTAD thin films after (iii) 1 day and 3 days air exposure.

Table S1. Summarized photovoltaic parameters of Gr/Si solar cells with increasing the LiTFSI content of the spiro-OMeTAD solutions.

LiTFSI content	V_{OC}	J_{SC}	FF	PCE	R_s
(mol%)	(mV)	(mA/cm^2)	(%)	(%)	(Ωcm^2)
0	240.8	0.16	33.41	0.01	
10	433.8	29.41	31.80	4.06	20.30
30	444.2	30.51	56.28	7.63	3.63
50	536.4	32.50	70.32	12.25	2.91
100	518.3	32.76	68.32	11.60	2.05

Table S2. Summarized photovoltaic parameters of Gr/Si solar cells with increasing the concentration of the spiro-OMeTAD solutions.

Concentration of spiro-OMeTAD	V_{OC}	J_{SC}	FF	PCE	R_s
(mg/mL)	(mV)	(mA/cm^2)	(%)	(%)	(Ωcm^2)
10	530.1	31.54	56.42	9.43	2.22
20	544.7	33.20	71.20	12.88	3.00
30	552.2	32.84	64.08	11.39	3.85
40	558.2	31.44	62.15	9.91	4.24

References

- 1 A. Tataroğluand Ş. Altındal, Microelectron. Eng., 2008, 85, 233-237.
- 2 D. Pysch, A. Metteand S. W. Glunz, Sol. Energ. Mat. Sol. C., 2007, 91, 1698-1706.