Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Interconnected honeycomb-like porous carbon derived from

plane tree fluff for high performance supercapacitors

Yunqiang Zhang^a, Xuan Liu^b, Shulan Wang^{a,*}, Shixue Dou^{c,*}, Li Li^{d,*}

 ^a Department of Chemistry, School of Science, Northeastern University, Shenyang, 110819, China.
 ^b Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
 ^c Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia.
 ^d Department of Materials Science and Engineering, Cornell University, Ithaca, NY,

14850, USA.

a 100 nm b 100 nm

Figure S1 SEM images of (a) HAC-800 and (b) IHPC-800.

Figure S2 SEM images of (a) IHPC-700, (b) IHPC-800, and (c) IHPC-900.

Figure S3 High-resolution TEM images of (a, b) CT-800 without a post-etching process with HCl, (c, d) HAC-800, and (e, f) IHPC-800.

Figure S4 (a) N_2 adsorption and desorption isotherm, with an enlargement of the hysteresis loop as inset, and (b) pore size distribution of IHPC-800.

Figure S5 High-resolution XPS scans for N1s, O1s, and S2p of the IHPC materials and control samples.

Figure S6 Electrochemical performance of CT-800 and HAC-800 in a three-electrode cell in 2 M H_2SO_4 . (a) CV curves at 50 mV s⁻¹. (b) GCD curves at the current density of 3 A g⁻¹. (c) Specific capacitance at different current densities. (d) Nyquist plots, with an enlargement of the high frequency region as inset.

Figure S7 Nyquist plot of IHPC-800 based symmetrical SCs in 2 M H_2SO_4 , with an enlargement of the high frequency region as inset.

Figure S8 Cycling stability of HIPC-800 based symmetrical SCs (a) in 2 M H_2SO_4 (5 A g^{-1}) and (b) in 1 M LiPF₆ in EC/DEC (2 A g^{-1}).

Precursor	C_{g}	Current density	Current density (A g ⁻¹)/cycle number/	References
	$(F g^{-1})$	$(A g^{-1})$	$C_{\rm g}$ retention (%)	
Willow catkin	285	1	5/10000/98	[S1]
Human hair	340	1	2/20000/98	[S2]
Seed shell	329	1		[83]
Banana peel	206	1	10/1000/98.3	[S4]
Banana fibers	74	0.5	0.5/500/89	[85]
Pomelo peel	342	0.2	10/1000/98	[S6]
IHPC-700	410; 325	0.2; 1	10/10000/96.10	This work
IHPC-800	493; 370	0.2; 1	10/10000/96.01	This work
IHPC-900	395; 306	0.2; 1	10/10000/97.30	This work
CT-800	196; 173	0.2; 1	10 /10000/97.02	This work
HAC-800	256; 209	0.2; 1	10/10000/95.20	This work

Table S1 Comparison of the electrochemical performance of the as-prepared samples with other bio-derived carbon materials from recent references.

Samples	$R_{\rm s}\left(\Omega ight)$	$R_{\rm ct}\left(\Omega ight)$
IHPC-700	0.56	0.61
IHPC-800	0.43	0.42
IHPC-900	0.45	0.76
CT-800	0.49	1.30
HAC-800	0.68	1.11

Table S2 Equivalent series resistance (R_s) and charge transfer resistance (R_{ct}) of as-prepared samples in threeelectrode cell.

References

- [S1] Y. Li, G. Wang, T. Wei, Z. Fan and P. Yan, Nano Energy, 2016, 19, 165-175.
- [S2] W. Qian, F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang and F. Yan, Energy Environ. Sci., 2014, 7, 379-386.
- [S3] A. Elmouwahidi, Z. Zapata-Benabithe, F. Carrasco-Marín and C. Moreno-Castilla, Bioresour. Technol., 2012, 111, 185-190.
- [S4] Y. K. Lv, L. Gan, M. Liu, W. Xiong, Z. Xu, D. Zhu and D. Wright, J. Power Sources, 2012, 209, 152-157.
- [S5] V. Subramanian, C. Luo, A. M. Stephan, K. S. Nahm, S. Thomas and B. Q. Wei,
 J. Phys. Chem. C, 2007, 111, 7527-7531.
- [S6] Q. Liang, L. Ye, Z.-H. Huang, Q. Xu, Y. Bai, F. Kang and Q.-H. Yang, Nanoscale, 2014, 6, 13831-13837.