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Experimental details
Synthesis of LisTisO,-TiO,, LisTis01,-TiO,/Sn and LisTis01,-TiO,/Sn@C

First, hydrogen titanate nanowire precursor was prepared via hydrothermal reaction between
anatase TiO, powders and concentrated NaOH solution (10 M) at 180 °C for 48 h, following the ion
substitution progress of Na* with H" in 0.5 M HNOj solution. Second, Li; g1Hg 19Ti,05'xH,0/SnO,
precursor was obtained by chemical lithiation of hydrogen titanate precursor and hydrolysis process
of SnCl,;-5H,0 in a 0.2 M LiOH solution heated at 180 °C for 2 h in a Teflon-lined stainless steel
autoclave. Thirdly, 0.2 g Li; g1Hg 19T1,05-xH,O/SnO, mixed with certain amounts of dopamine
hydrochloride were added to the tris-buffer (200 mL, pH =8.5) and stirred for 24 h at room
temperature. Finally the precipitate was collected, and after drying it was annealed under an Ar/H,
(95%:5% Vol) atmosphere at 600 °C for 6 h. For comparison, the Li;TisO,-TiO; and LisTi50;-
TiO,/Sn samples were prepared by heating Li; giH 19T1,05:xH,0 and Li; g;Hg 19T1,05:xH,0/SnO,
precursors respectively, and keeping the other heating experimental variables fixed. Besides, we
also synthesized the LisTisO-TiO,-NWs@C and Sn@C electrodes using the same hydrolysis and
coating processes as contrasts shown in ESI.
Material Characterizations

The morphology, size and crystal structure of the as-prepared samples were characterized by
MERLIN VP Compact for scanning electron microscope (SEM), Hitachi-HT7700 for TEM, and
JEM-2100F for high resolution transmission electron microscopy (HRTEM), selected-area electron
diffraction (SAED) and EDS mapping. X-ray diffraction (XRD) was recorded on a Rigaku D/Max-B
X with Cu Koradiation (A= 1.5418 A). The Raman spectrum was recorded on a HR800 Raman
spectrometer (HORIBA, France) using the 488 nm line of an ArC laser as the excitation beam at a
heating rate of 2 °C min~!. Inductively coupled plasma mass spectroscopy (ICP-MS) analysis was
carried out using iCP QC (Thermo Fisher Scientific, US) to determine the content of Sn, and
elemental analyzer (CE-440) was used for nitrogen content. Thermogravimetric analysis (TGA) was
carried out using thermogravimetric analyzer (NETZSCH-STA 449 F3) with a heating rate of 10
°C/min in air. Nitrogen adsorption—desorption isotherms were obtained using an Automated vapor
sorption analyzer (Autosorb-iQ2-MP, Quanta Chrome) at 77.4 K under vacuum. The specific

surface area was calculated by the Brunauer-Emmett-Teller (BET) method. X-ray photoelectron



spectroscopy (XPS) spectra data were obtained using Escalab 250XI system (Thermo Fisher
Scientific, US).
Electrochemical investigation

For the electrochemical measurements, the as-prepared active materials were mixed with
polyvinylidene fluoride (PVDF) and Super P in a weight ratio of 80:10:10 in N-methyl-2-
pyrrolidene (NMP) solution. The mixed materials were pasted on aluminum foils and dried in a
vacuum oven at 100 °C for 10 h, and then were cut into discs and pressed as working electrodes
(WE). The 2032-coin-type cells were assembled in an argon-filled glove-box. Pure lithium was used
as the counter electrode. The electrolyte was 1 M LiPF¢ ethylene carbonate (EC): dimethylcarbonate
(DMC) =1:1 in volume. The separator was a microporous membrane (Celguard 2400, USA). The
mass loadings of all the electrodes in this work are controlled between 1.0-1.2 mg cm2. The
discharge/charge tests were carried out using a LAND Cell test 2001 A (Wuhan, China) system
between 2.5 and 1.0 V. Zahner IM6 electrochemical workstation was used for cyclic voltammetry
(CV) with the scan scope of 1.00-2.50 V. All the electrochemical tests were conducted at room

temperature.
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Figure S1. Raman spectrum of the LTO-TO-NWs/Sn@C composite.
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Figure S2. Thermogravimetric analysis (TGA) of the LTO-TO-NWs/Sn@C composite in air.
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Figure S3. (a) The full XPS spectrum of LTO-TO-NWs/Sn@C composite. The inset shows the N1s

spectrum of LTO-TO-NWs/Sn@C composite. (b) Sn 3d XPS spectra of as-prepared LTO-TO-

NWs/Sn@C composite. Note that Sn** signal in Fig. S3(b) is that some Sn NPs near the surface of

the carbon layer were oxidized to SnO,.



Figure S5. TEM image of LTO-TO-NWs/Sn@C composite.
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Figure S6. N, sorption isotherms of LTO-TO-NWs/Sn@C composite.

500
E @ Sn@c
R @ LTO-TO-NWs@C
"o 400 B @ LTO-TO-NWs/Sh@C
i oy
<
=
~300
P
S
@©
j@ 18
o 200
o
Y
3
o 100
w
I 500 mA g’
0 1 1 1 1 1
0 50 100 150 200 250 300

Cycle number

Figure S7. Cycling performance of LisTi501,-TiO,-NWs@C (LTO-TO-NWs@C), Sn@C and
LTO-TO-NWs/Sn@C electrode materials at 500 mA g~!. Note that the cycling performance of the
three electrodes at 500 mA g demonstrates that LTO-TO-NWs/Sn@C possesses much higher

capacity and better stability than LTO-TO-NWs@C and Sn@C electrodes.



Table S1. Comparison of this work with previously reported Ti-based high-capability composites.

Materials

Content of high
capacity materials

(wt %)

Capacity after cycles (mAh g')

N-doped carbon coated Li;TisO,-
TiO,/Sn nanowires (this work)

L14T150 12—Ti02 nanowires
(comparison)

Li4Ti501,-T10,/Sn nanowires
(comparison)

N-doped carbon coated LisTisO5-
Ti0O, (comparison)

N-doped carbon coated Sn NPs
(comparison)

18 (Sn)

26 (Sn)

70 (Sn)

360, 600 cycles (1,000 mA g)

150, 400 cycles (500 mA g!)

166, 400 cycles (500 mA g

230, 240 cycles (500 mA g!)

190, 300 cycles (500 mA g)

Li4Ti501,/Sn nano-compositeS!

10 (Sn)

200, 30 cycles (0.02 C)

LisTi501,/tin phase compositeS?

~10 (Sn & SnO,)

224, 50 cycles (100 mA g!)

Li4Ti5s0,, 2D nanosheets and SnO,
0D nanocrystalsS?

25 (Sn0,)

150, 30 cycles (0.1 mA cm™)

Core—shell SnO,@Li4TisO,%*

60 (SnO,)

457, 30 cycles (100 mA g!)

Core—shell (l'FCzOg, @ Li4Ti5012$5

~30 ((l' FeZO3)

249.3, 30 cycles (100 mA g!)

LisTis01,/NiO nanocompositeS

5 (NiO)

176, 100 cycles (1 C)

Li4Tis01,/C0304 compositeS’

12.5 (CO304)

~300, 50 cycles (160 mA g!)

Ti0,-Sn/C core-shell nanowires

-1
e — 24.8 (Sn) 459, 160 cycles (335 mA g 1)
Ti0,-Sn@C core-shell 4
s 37.5 (Sn) 206, 2,000 cycles (500 mA g'!)
Ti0,(B)@SnO,/ carbon nanowiresS1? 15 (Sn0Oy) 669, 67 cycles (60 mA g!)
SnO,@TiO,@reduced graphene _ 1
g e Pl --(Sn0Oy) 700, 70 cycles (500 mA g1)
Sn0,/Ti0, nanocompositeS1? 65 (Sn0,) ~600, 100 cycles (0.2C)
Snoz%j;?;uggggge*he” ~45 (SnO») 200, 50 cycles (1,500 mA g)
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