Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Keplerate-typePolyoxometalate/SemiconductorCompositeElectrodewithLight-enhancedConductivitytowardsHighEfficientPhotoelectronicDevices

Shasha Xu,^{‡a} Yanhua Wang,^{‡a} Yue Zhao,^c Weilin Chen,^{*a} Jiabo Wang,^a Lifei He,^a Zhongmin Su,^a Enbo Wang^{*a} and Zhenhui Kang^{*b}

^aKey laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Renmin Street No.5268, Changchun, Jilin, 130024, P. R. China. E-mail: chenwl@nenu.edu.cn, wangeb889@nenu.edu.cn, Tel: +86-431-85098787.

^bInstitute of Functional Nano and Soft Materials (FUNSOM) & Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University 199 Ren-Ai Road, Suzhou 215123, China. E-mail: <u>zhkang@suda.edu.cn</u>

^cDepartment of Vascular Surgery, The China-Japan Union Hospital of Jilin University, Changchun, 130033, China

[‡]These two authors are equally contributed to this paper.

Fig. S1 The structure of $\{Mo_{132}\}$ with perspective view along *a* fivefold symmetry axis (yellow: MoO₇, blue: $\{MoO_6\}$ groups, purple: $\{MoV_2\}$).

Fig. S2 (a) TG curve of $\{Mo_{132}\}$. (b) The IR spectra under different temperature (150, 210 and 250 °C for T₁, T₂ and T₃, respectively).

Fig. S3 The XPS survey spectrum of 5% {Mo₁₃₂}/TiO₂.

Fig. S4 Equivalent circuit used to fit the impedance measurements for the surfacemodified electrode. (R_s is the solution resistance, R_{ct} is the charge transfer resistance, Z_w is the warburg element and C_{dl} is the double layer capacitance.)

Fig. S5 XRD patterns of calcined ZnO.

Fig. S6 (a) The SEM graph of ZnO. (b) The SEM graph of 5%{Mo₁₃₂}/ZnO film electrodes. (c) Photocurrent responses of ZnO and 5%{Mo₁₃₂}/ZnO. (d) Nyquist plots of ZnO and 5%{Mo₁₃₂}/ZnO. (red line: 5%{Mo₁₃₂}/ZnO, black line: ZnO)

Fig. S7 XRD patterns of calcined WO₃.

Fig. S8 SEM graphs of WO₃ and 5%{Mo₁₃₂}/WO₃ film electrodes.

Fig. S9 XRD patterns of calcined SnO₂.

Fig. S10 (a) The SEM graph of SnO₂. (b) The SEM graph of 5%{Mo₁₃₂}/SnO₂ film electrodes. (c) Photocurrent responses of SnO₂ and 5%{Mo₁₃₂}/SnO₂. (d) Nyquist plots of SnO₂ and 5%{Mo₁₃₂}/SnO₂. (red line: 5%{Mo₁₃₂}/SnO₂, black line: SnO₂)

Fig. S11 *J-V* curves of the DSSCs with different proportions of $\{Mo_{132}\}/TiO_2$ and pure TiO₂ as the photoanodes. (green: pure TiO₂, pink: $1\%\{Mo_{132}\}/TiO_2$, black: $3\%\{Mo_{132}\}/TiO_2$, red: $5\%\{Mo_{132}\}/TiO_2$, blue: $7\%\{Mo_{132}\}/TiO_2$)

Fig. S12 (a) Nyquist plots. (b) Bode phase plots. (c) OCVD curves of different DSSCs. (d) Electron lifetime calculated from OCVD. (black: pure TiO₂, red: 1%{Mo₁₃₂}/TiO₂, blue: 3%{Mo₁₃₂}/TiO₂, green: 5%{Mo₁₃₂}/TiO₂, pink: 7%{Mo₁₃₂}/TiO₂)

Percentage	J_{sc} (mA cm ⁻²)	$V_{oc}(\mathbf{V})$	FF	$\eta(\%)$
0	15.28 ± 0.01	0.621 ± 0.003	0.638 ± 0.020	6.06 ± 0.04
1	15.54 ± 0.02	0.648 ± 0.004	0.669 ± 0.010	6.73 ± 0.02
3	16.14 ± 0.01	0.657 ± 0.003	0.668 ± 0.030	7.08 ± 0.03
5	16.78 ± 0.02	0.711 ± 0.002	0.666 ± 0.020	7.94 ± 0.01
7	15.33 ± 0.02	0.646 ± 0.004	0.623 ± 0.010	6.17 ± 0.02

 Table S1
 Photovoltaic parameters of different DSSCs.

Table S2 The corresponding parameters of different DSSCs obtained fromelectrochemical impedance spectroscopy.

Percentage	$R_{l}(\Omega)$	$R_2(\Omega)$	f_{max} (Hz)	$\tau_e(ms)$
0	2.23	4.86	72.20	2.21
1	2.14	5.32	52.82	3.02
3	2.18	5.61	33.14	4.81
5	2.07	6.26	31.10	5.12
7	2.28	5.04	48.06	3.32

Note: The mean electron lifetime (τ_e) can be got from the relation: $\tau_e = (2\pi f_{max})^{-1}$. f_{max} is the frequency at the top of the intermediate frequency arc.