Supporting Information

Cyclized-Polyacrylonitrile Modified Carbon Nanofiber Interlayer Enabling Strong Trapping for Polysulfides in Lithium-Sulfur Battery

Qing Li^{a,b[+]}, Ming Liu^{a,b[+]}, Xianying Qin^{a,c*}, Junxiong Wu^{a,b}, Wenjie Han^{a,b}, Gemeng Liang^{a,b}, Dong Zhou^{a,b}, Yan-Bing He^a, Baohua Li^{a1}, and Feiyu Kang^{a,b}

^a Engineering Laboratory for Next Generation Power and Energy Storage Batteries, and Engineering Laboratory for Functionalized Carbon Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.

^b School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.

^c Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong. ^[+]These authors contributed equally to this work.

¹Corresponding authors: Tel.: +86 755 26036419. Fax: +86755 26036419. E-mail address: <u>libh@mail.sz.tsinghua.edu.cn</u> (B. Li); <u>qin.xianying@sz.tsinghua.edu.cn</u> (X. Qin)

Interlayer type	Surface	Functional	Discharge	Cycle	Residual reversible	Degradation	Retention/%	Ref.
	area/m ² g ⁻¹	Group	current(mA g ⁻¹)	number	capacity (mAh g-1)	rate per		
						cycle		
Fe3C/carbon	62	C-N,C-Fe	200	100	893	0.24%	75.9	[28]
nanofiber								
Microporous	695	none	1675	100	1000	0.15%	85	[23]
Carbon Paper								
p-NP-G	573.7	pyrrolic	1675	500	850	0.09%	55%	[25]
		N,-P-O						
TiO2&Graphene	-	-Ti	3350	1000	630	0.01%	90%	[33]
polypyrrole	258	-H	837.5	300	712	0.2%	64.6%	[22]
nanotube								
CO2 activated	460	C=O	335	200	910	0.2%	60%	[29]
carbonized								
PAN nanofibers								
MWCNT Paper	-	none	838	100	855	0.41%	59.1%	[24]
Porous	200	Pyrrolic N	1675	300	698	0.128%	61.33%	[40]
Carbonized		C=O						
graphene-embedded								
fungus film								
CP@CNF	80	C=N	502.5	200	710	0.127%	74.6	Curre
								nt study

Table S1. Comparison of electrochemical performance of different interlayer

Table S2. Simulated resistance parameters of cell with CNF/PCNF interlayers.

BatteryType	CNF Interlayer			CP@CNF Interlayer		
Cycle Number	$R_b(\Omega)$	$R_{sei}\left(\Omega ight)$	$R_{ct}\left(\Omega\right)$	$R_{b}\left(\Omega\right)$	$R_{sei}\left(\Omega ight)$	$R_{ct}\left(\Omega\right)$
Fresh Cell	3.32	-	62.85	2.251	-	70.24
After 2 Cycles	9.886	4.328	17.78	7.125	6.213	11.10
After 100 Cycles	10.66	17.04	17.94	7.823	6.739	11.58

Table S3. Surfur content of both sides of CNF interlayers and PCNF interlayers

Sulfur content (%)	CNF interlayer	CP@CNF interlayer
Sulfur cathode side	7.80	2.23
Separator side	4.44	1.90

Figure S1. Experimental and simulated EIS curves of the cell with CNF interlayer after 100 cycles using an equivalent circuit by Z-view software.

Figure S2. Cycling performances of cells with sulfur loading around 2 mg cm⁻², at current of 1C, using CNF and CP@CNF as interlayers.

In order to increasing the sulfur loading, the bare sulfur electrodes mentioned in Figure S2 are consist of 65 wt% sulfur, 26.7 wt% carbon black (Super P) and 8.3 wt% polyvinylidene fluoride (PVDF). And the mass loading of sulfur in the obtained cathode is around 2 mg cm⁻².

Figure S3. (a) The HAADF-STEM (High-angle annular dark-field scanning transmission electron microscopy) image of CP@CNF interlayer after 100 cycles and EDS mapping (b)C, (c)O, (d)S and (e)N.