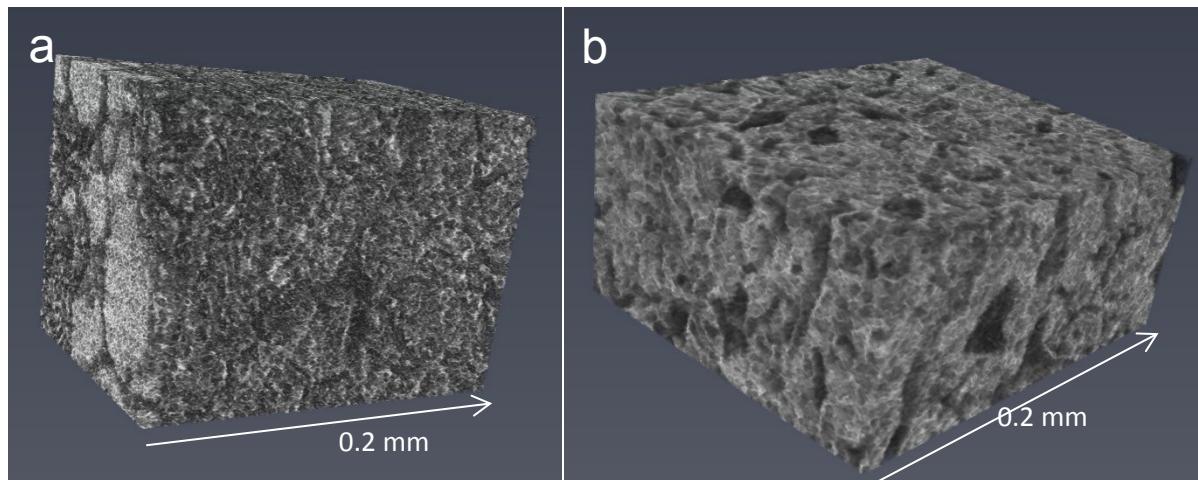
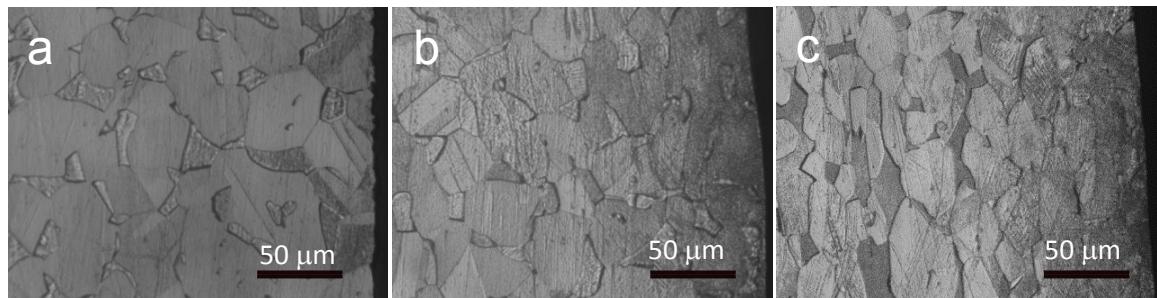
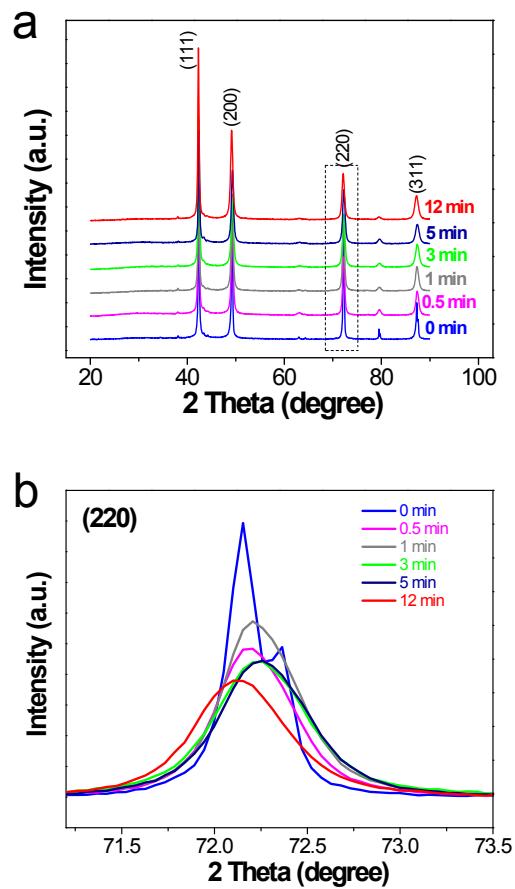


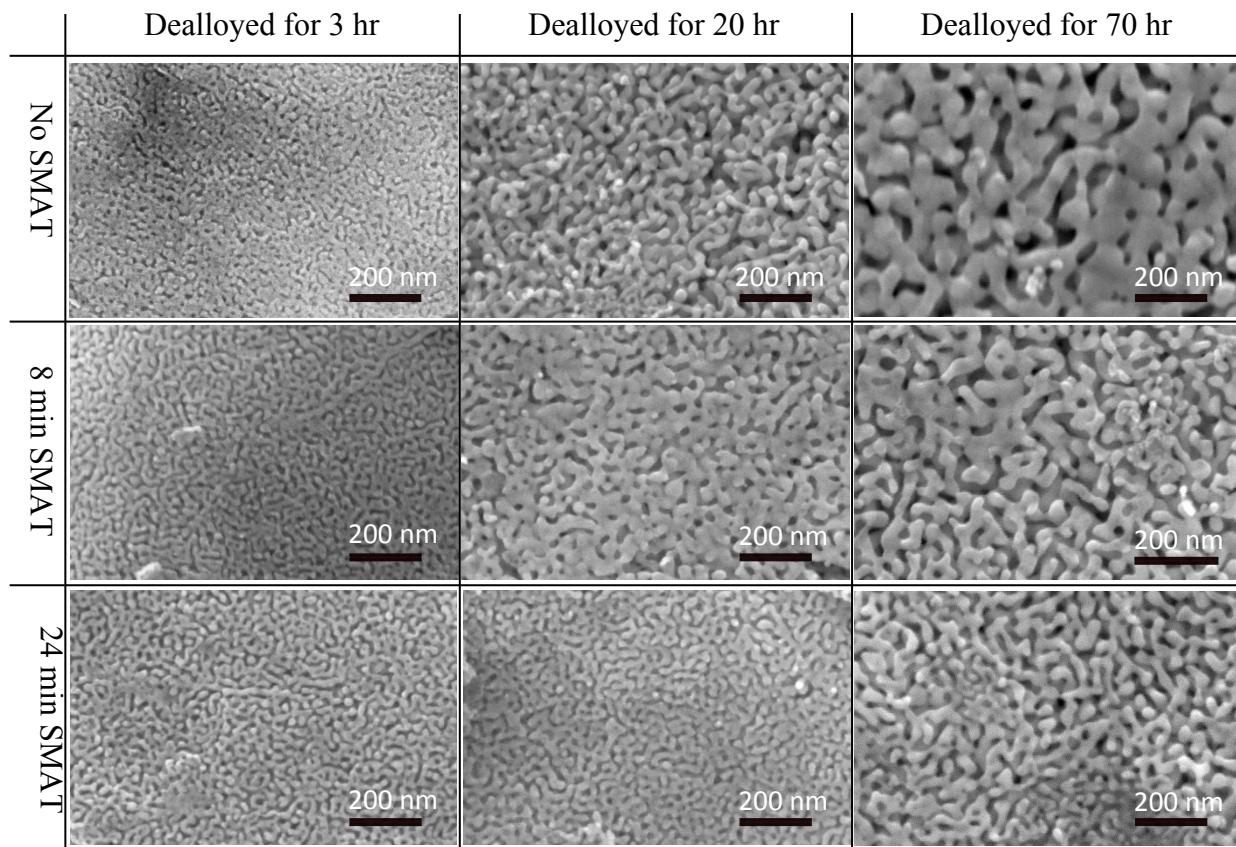
Supplementary Information for


**Bulk monolithic electrodes enabled by surface mechanical attrition treatment-facilitated
dealloying**

Jie Zhang,^{a,c} Lap-Chung Chan,^b Ting Gao,^d Qing Wang,^b Shanshan Zeng,^{a,c} Haidong Bian,^{a,e}


Chris Lee,^{a,c} Zhengtao Xu,^e Yang Yang Li,^{a,c,f,*} and Jian Lu^{b,g,*}


Fig. S1. Optical micrographs of the CuZn alloys as-received (a1, a2) and after annealed at 600 °C for 1 hr (b1, b2). It can be seen that the CuZn alloy is a 2-phase system. The two phases in the as-received sample displayed elongated and oriented grains, possibly resulted from the cold work treatment during manufacturing, whereas the thermal annealing restored homogeneous and uniform grain distribution for both phases.


Fig. S2. X-ray synchrotron tomography images of bulk porous Cu structures that was SMA Ted for 0 (a) and 12 (b) min and dealloyed for 7 hr. Note that the darker regions in b is the dealloyed β phase.

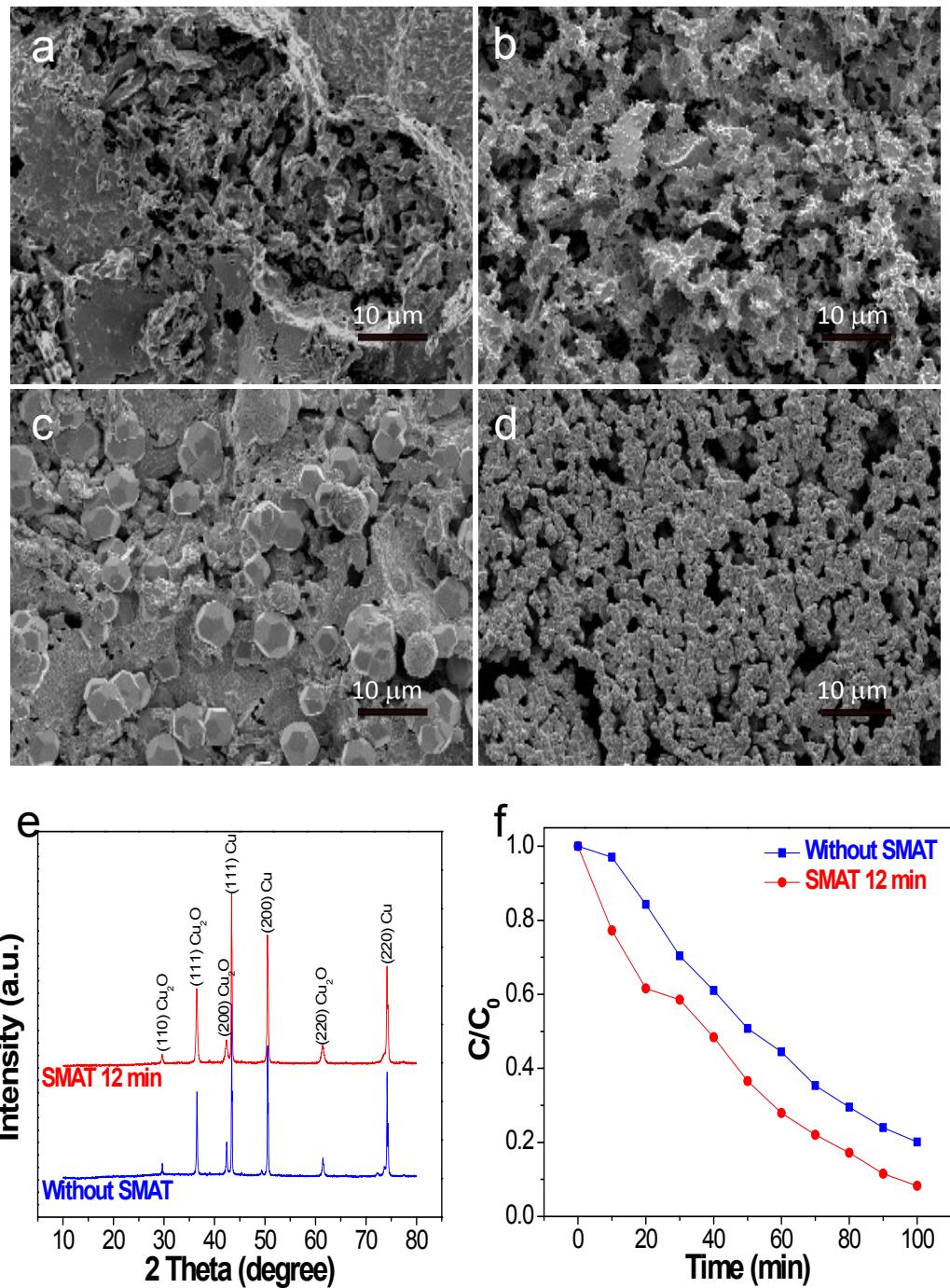

Fig. S3. Cross-sectional optical metallographic images of the as-annealed CuZn alloy after subjection to SMAT for 0 (a), 1 (b), and 12 (c) min. Reduced grain sizes, denser grain boundaries, and accumulated defects (e.g., slip or twinning boundaries) are clearly observed after the SMAT.

Fig. S4. XRD patterns collected on the CuZn samples that were SMA Ted for different time duration.

Fig. S5. SEM images of nanoporous gold fabricated from the commercial AuAg pellet (Kurt J. Lesker, Au₄₄Ag₅₆ by weight, 99.99% pure, 10 mm diameter × 10 mm long). The AuAg pellet was wire cut into 0.5 mm thick disks, polished, SMATed, and dealloyed in 67% HNO₃ at room temperature. The SMAT effects observed on the AuAg alloy system is consistent with the CuZn alloy system, e.g., anti-coarsening enabled.

Fig. S6. a-d) SEM images of the porous Cu frameworks that was pre-SMATED for 0 (a,c) and 12 (b,d) min and dealloyed for 7 hours, before (a,b) and after (c,d) coated with Cu₂O. e) XRD

patterns of the Cu₂O-coated Cu frameworks whose SEM images were shown in c, d. f) Ratio of the actual and initial concentrations (c/c_0) of methyl blue as a function of the UV illumination time measured on the sample whose SEM images were shown in c, d. The Cu₂O coating was fabricated by soaking the dealloyed porous Cu frameworks (dealloyed for 7 hr) in an aqueous solution of copper (II) sulfate (Aldrich, 2.5 mM), ammonium nitrite (Aldrich, 1.25 mM), and ammonium hydroxide (Riedal–Dehaën, 2.7%) at 90 °C for 20 min.

Table S1. Performance comparison with some recent bulk framework-based supercapacitor electrodes

Material system	Area-specific capacitance (F cm ⁻²)	Volume-specific capacitance (F cm ⁻³)	Reference
NiOOH@Cu film (250 μ m thick)	11.2 @ 6 mA cm ⁻² 10.5 @ 12 mA cm ⁻² 9.63 @ 20 mA cm ⁻²	448.8 @ 6 mA cm ⁻² 420.1 @ 12 mA cm ⁻² 385.2 @ 20 mA cm ⁻²	This study
CNT by CVD/MnO ₂ by hydrothermal @ graphene foam by templating Ni foam (1 mm thick)	0.75 @ 5 mV s ⁻¹		Energy Environ. Sci., 7, 3709 (2014)
NiCo ₂ O ₄ nanoneedles @ Ni foam	3.12 @ 1.11 mA cm ⁻² 0.79 @ 11.12 mA cm ⁻²		Energy Environ. Sci. 5, 9453 (2012)
NiCuMnOOH oxyhydroxide by dealloying Ni ₁₅ Cu ₁₅ Mn ₇₀ (at.%) alloy ribbons (20 μ m thick)	1.2054 @ 0.5 mA cm ⁻²	627 @ 0.5 mA cm ⁻²	Angew. Chem. Int. Ed. 54, 8100 (2015)
Reduced graphene oxide-based hydrogel film (~350 μ m thick)	0.071 @ 1 mA cm ⁻² 0.063 @ 10 mA cm ⁻² 0.0547 @ 100 mA cm ⁻²		Adv. Mater. 27, 4469 (2015)
Ni(OH) ₂ by electrodeposition/CoO nanowalls by hydrothermal @ Ni foam (~0.1 mm thick)	11.5 @ 5 mA cm ⁻² 6.49 @ 40 mA cm ⁻²		Adv. Mater. 24, 4186 (2012)
Ni(OH) ₂ by chemical bath deposition/CNT by CVD @ Ni foam	16 @ 2.5 mA cm ⁻²		Adv. Funct. Mater. 22, 1272 (2012)
Porous Ni film (50 μ m) by dealloying NiMn film	1.40 @ 1 mA cm ⁻²	334 @ 1 mA cm ⁻²	J. Power Sources 247, 896 (2014)
Cobalt oxide nanobrush-graphene @ Ni_xCo_{2x}(OH)_{6x} by hydrothermal, two-step calcination and two-step electrodeposition	5.1 @ 1 A g ⁻¹ 4.96 @ 2 A g ⁻¹ 4.7 @ 5 A g ⁻¹ 4.66 @ 10 A g ⁻¹ 4.23 @ 20 A g ⁻¹		Nano Lett. 15, 2037 (2015)
CoO/Ppy nanowire array @ Ni foam (~1.1 mm thick)	4.43 @ 1 mA cm ⁻² 2.51 @ 5 mA cm ⁻² 2.13 @ 10 mA cm ⁻² 1.79 @ 20 mA cm ⁻² 1.28 @ 50 mA cm ⁻²		Nano Lett. 13, 2078 (2013)
MnO ₂ /CNT ink @ sponge (~1 mm thick) by dip coating and electrodeposition	0.0009 @ 1 mV s ⁻¹		Nano Lett. 11, 5165 (2011)
RuO ₂ nanoparticles @ graphene-CNT hybrid foam (0.5 mm thick) by CVD and sol-gel synthesis	1.11 @ 1 mA cm ⁻²		Sci. Rep. 4, 4452 (2014)