Supporting information

Rational design of cobalt-chromium layered double hydroxide as a highly efficient electrocatalyst for water oxidation

Chenlong Dong^a, Xiaotao Yuan^a, Xin Wang^a, Xiangye Liu^a, Wujie Dong^a, Ruiqi Wang^a, Yu hang Duan^c, Fuqiang Huang^{a, b,*}

^a Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China;

^b CAS Key Laboratory of Materials for Energy Conversion and State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China.

^c Faculty of Science, Applied Chemistry Program, Beijing University of Chemical Technology, Beijing 100029, P.R. China

* Corresponding author, E-mail addresses: huangfq@pku.edu.cn

Figure S1. Energy dispersive X-ray spectrum of CoCr LDH powder (2:1).

Element Number	Element Symbol	Element Name	Concentration (%)	Error (%)	
8	0	Oxygen	58.4	0.8	
27	Со	Cobalt	14.6	1.4	
24	Cr	Chromium	7.4	1.5	
6	С	Carbon	19.5	3.7	

Table S1. Element analysis of CoCr LDH.

Figure S2. The TG/DSC curves of CoCr LDH (2:1)

Figure S3. The XPS survey of CoCr LDH (2:1)

Figure S4. Nyquist plots of CoCr LDH and RuO₂.

Figure S5. The I-U curve by LSV measurements of (a) Co(OH)₂, (b) CoOOH, (c) Cr(OH)₃ and (d) CoCr LDH.

Figure S6. The XRD patterns of CoCr LDH with different ratios of Co to Cr.

Figure S7. The SEM-EDX patterns of CoCr LDH with different ratios of Co to Cr.

Figure S8. The XRD patterns of Co and Cr hydroxide.

Figure S9. The FTIR pattern of amorphous Cr hydroxide.

Catalyst	Onset overpotential	Overpotential (mV)@	Tafel slope		reference
	(mV)	10 mA/cm ²	(mV dec ⁻¹)	Electrolyte	
This work	240	340	81	0.1 M KOH	This work
NiCo LDH	290	420	113	0.1 M KOH	1
ZnCo LDH	340	530	—	0.1 M KOH	2
CoFe LDH	310	465	—	0.1 M KOH	3
C0C2O4	330	436	73	0.1 M KOH	4
LiCo _{0.8} Fe _{0.2} O ₂	260	340	50	0.1 M KOH	5
Co ₃ O ₄ /NiCo ₂ O ₄	300	340	88	0.1 M KOH	6
ZnCo LDH/rGO	330	430	73	0.1 M KOH	7
СоООН	370	550	55	0.1 M KOH	8
CoMn LDH	260	325	43	1 M KOH	9
Mn ₃ O ₄ /CoSe ₂	290	450	49	0.1 M KOH	10
Au/Co oxide	260	_		0.1 M KOH	11

Table S2. Comparison with some reported Co-based OER catalysts.

Reference

- S1 J. Jiang, A. Zhang, L. Li and L. Ai, J. Power Sources, 2015, 278, 445-451.
- S2 X. Zou, A. Goswami and T. Asefa, J Am Chem Soc, 2013, 135, 17242-17245.
- **S3** G. Abellán, J. A. Carrasco, E. Coronado, J. Romero and M. Varela, *J. Mater. Chem C*, 2014, **2**, 3723-3731.
- S4 X. Liu, J. Jiang and L. Ai, J. Mater. Chem A, 2015, 3, 9707-9713.
- S5 Y. Zhu, W. Zhou, Y. Chen, J. Yu, M. Liu and Z. Shao, Adv. Mater, 2015, 27(44): 7150-7155.
- S6 H. Han, G. Buyuan, X. Baoyu and X. W. D. Lou, J Am Chem Soc, 2015, 137, 5590-5595.
- S7 D. Tang, Y. Han, W. Ji, S. Qiao, X. Zhou, R. Liu, X. Han, H. Huang, Y. Liu and Z. Kang, *Dalton trans*, 2014, 43, 15119-15125.
- S8 C. S. Lim, C. K. Chua, Z. Sofer, K. Klímová, C. Boothroyd and M. Pumera, J. Mater. Chem A, 2015, 3, 11920-11929.
- **S9** F. Song and X. Hu, J Am Chem Soc, 2014, 136, 16481-16484.
- **S10** M. R. Gao, Y. F. Xu, J. Jiang, Y. R. Zheng and S. H. Yu, J Am Chem Soc, 2012, **134**, 2930-2933.
- **S11** B. S. Yeo and A. T. Bell, *J Am Chem Soc*, 2011, **133**, 5587-5593.