## **Electronic Supplementary Information**

## Fluorine-induced high-performance narrow bandgap polymer based on thiadiazolo[3,4-*c*]pyridine for photovoltaic application

Jiuxing Wang,<sup>a,b</sup> Xichang Bao,<sup>\*,a</sup> Dakang Ding,<sup>a,c</sup> Meng Qiu,<sup>a</sup> Zurong Du,<sup>a,b</sup> Junyi

Wang,<sup>a,b</sup> Jie Liu,\*,<sup>a</sup> Mingliang Sun<sup>c</sup> and Renqiang Yang\*,<sup>a,d</sup>

<sup>a</sup>CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.

<sup>b</sup>University of Chinese Academy of Sciences, Beijing 100049, China.

<sup>c</sup>Institute of Material Science and Engineering, Ocean University of China, Qingdao 266100,

China.

<sup>d</sup>State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, China.

\*E-mail: baoxc@qibebt.ac.cn

liu\_jie@qibebt.ac.cn

yangrq@qibebt.ac.cn



Fig. S1 TGA plots of PDTPT-2T and PDTPT-2TF.



Fig. S2 Temperature-dependent absorption spectra of PDTPT-2TF in DCB solution.



Fig. S3 The distributions of HOMO and LUMO of the molecular models.<sup>1</sup>

## Hole Mobility Measurements.

Hole mobility was obtained using the SCLC method:<sup>2</sup>

$$J = \frac{9\varepsilon_0 \varepsilon_r \mu V^2}{8L^3}$$

where  $\varepsilon_0$  is the vacuum permittivity,  $\varepsilon_r$  is the relative dielectric constant,  $\mu$  is the

hole mobility, V is the electric field, L is the thickness of the organic layer, and J is the current density.



**Fig. S4** The dark *J-V* plots of the hole-only devices based on (a) PDTPT-2TF:PC<sub>71</sub>BM (1:2) and (b) PDTPT-2T:PC<sub>71</sub>BM (1:2). The experimental data (red circles) are fitted (olive lines) using SCLC modified Mott-Gurney model.



**Fig. S5** *J-V* characteristics of the PDTPT-2T-based devices processed with (a) 1,8diiodooctane (DIO) and (b) 1-chloronaphthalene (CN) additives.

| Processing |                      |                              |        |                                |
|------------|----------------------|------------------------------|--------|--------------------------------|
| additive   | $V_{\rm oc}({ m V})$ | $J_{\rm sc}~({\rm mA/cm^2})$ | FF (%) | $PCE_{max} (PCE_{ave})^a (\%)$ |
| 1% DIO     | 0.69                 | 3.84                         | 62.71  | 1.66 (1.59)                    |
| 2% DIO     | 0.67                 | 3.62                         | 56.83  | 1.38 (1.32)                    |
| 3% DIO     | 0.68                 | 3.04                         | 61.63  | 1.27 (1.21)                    |
| 1% CN      | 0.73                 | 3.27                         | 63.25  | 1.51 (1.49)                    |
| 2% CN      | 0.75                 | 3.00                         | 55.98  | 1.26 (1.20)                    |
| 3% CN      | 0.73                 | 2.89                         | 52.98  | 1.12 (0.85)                    |

**Table S1** Photovoltaic parameters of the PDTPT-2T-based PSCs processed with DIO and CN additives under AM 1.5G illumination (100 mW/cm<sup>2</sup>)

<sup>a</sup>The average PCE value was obtained from 5 devices.



Fig. S6 TEM images of PDTPT-2T:PC<sub>71</sub>BM processed with 1% (a) DIO and (b) CN additives.



Fig. S7 <sup>1</sup>H NMR spectrum of compound 3.













Fig. S12 <sup>1</sup>H NMR spectrum of 2TF-Sn.





## References

(1) Gaussian 09, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT, 2009.

(2) Murgatroyd P N. Theory of Space-Charge-Limited Current Enhanced by Frenkel Effect. *J Phys. D Appl. Phys.* 1970, **3**, 151-156.