Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Figure S1. (a) XRD spectra of β -Co(OH)₂, α -Co(OH)₂-Cl and M-Co(OH)₂. The predominant 00*l* reflections of α - and β -phase are indicated as subscripts α and β , respectively. Insets of (a): the pink powders represent β -Co(OH)₂ and the green powders represent α -Co(OH)₂-Cl. (b) EDX spectra of β -Co(OH)₂, α -Co(OH)₂-Cl and M-Co(OH)₂, revealing different atomic ratios of Co : Cl.

Figure S2. (a) XRD pattern of α -Co(OH)₂-DS, identifying the structure of α -type Co(OH)₂. (b) FT-IR spectrum of α -Co(OH)₂-DS, confirming the existence of dodecyl sulfate interlayer ions.

Figure S3. TEM images of α -Co(OH)₂-Cl (a) before OER test and (b) after OER test.

Figure S4. N₂ sorption isotherms of pristine and electrochemical etched α -Co(OH)₂-Cl.

Figure S5. Raman spectra for the sample of α -Co(OH)₂-Cl before and after OER electrolysis in 1.0 M KOH.

Figure S6. The polarization curves of β -Co(OH)₂, α -Co(OH)₂-DS, M-Co(OH)₂ and α -Co(OH)₂-Cl, respectively.

Figure S7. CVs at different scan rates in a potential window where no Faradaic processes occur (1.20 V ~ 1.30 V *vs.* RHE) for (a) β -Co(OH)₂, (b) α -Co(OH)₂-DS and (c) α -Co(OH)₂-Cl, respectively.

Figure S8. Current density at $\eta = 320$ mV plotted against ECSA for the sample of β -Co(OH)₂. Black solid sphere: β -Co(OH)₂ at different loadings; royal blue triangle: α -Co(OH)₂-Cl; red solid sphere: estimated activity of β -Co(OH)₂ with the same ECSA as α -Co(OH)₂-Cl.

$ECSA_{\alpha}/ECSA_{\beta}$	j_{α}/j_{β} at $\eta = 300 \text{ mV}$	j_{α}/j_{β} at $\eta = 320 \text{ mV}$
12.98	44.44	58.82

Table S1. Comparison of ECSA and OER performance of α -Co(OH)₂-Cl and β -Co(OH)₂.

Catalysts (mg/cm ²)	Electrolyte	Onset potential (mV)	Overpotential at 10 mA/cm ² (mV)	Tafel slope (mV/decade)	References
Co ₃ O ₄ /C nanowires/Cu foil ^a (~0.2)	0.1 M KOH	240	290	70	J. Am. Chem. Soc., 2014, 136 , 13925-13931.
СоООН (0.15)	1 M KOH	/	300	38	Angew. Chem. Int. Ed., 2015, 54, 8722-8727.
α-Co(OH) ₂ -Cl (0.2)	1 M KOH	~240	~320	53	this work
CoSe ₂ (0.142)	0.1 M KOH	/	320	44	J. Am. Chem. Soc., 2014, 136 , 15670-15675.
Co ₃ Fe ₇ O _x /NPC (0.36)	1 M KOH		328	31	J. Mater. Chem. A, 2016, 4, 6048-6055.
crumpled graphene- CoO (0.7)	1 M KOH	/	340	71	Energy Environ. Sci., 2014, 7, 609-616.
NiCo _{2.7} (OH) _x	1 M KOH	250	350	65	Adv. Energy Mater., 2015, 5, 1402031.
CoMn-LDH (0.142)	1 M KOH	/	350	43	J. Am. Chem. Soc., 2014, 136 , 16481-16484.
CoCo-NS (0.07)	1 M KOH	307	353	45	Nat. Commun., 2014, 5, 4477.
CoP/C	0.1 M KOH		360	66	ACS Catal., 2015, 5, 4066-4074.
Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3-x}	0.1 M KOH	314	~362	~48	Science, 2011, 134 , 1383-1385.
NG-CoSe ₂ (0.2)	0.1 M KOH	293	366	40	ACS Nano, 2014, 8 , 3970-3978.
exfoliated NiCo LDH /carbon paper (0.08)	1 M KOH	/	367	40	Nano Lett., 2015, 15 , 1421-1427.
reduced Co ₃ O ₄ (0.136)	1 M KOH	290	~410	72	Adv. Energy Mater., 2014, 4, 1400696.
SrNb _{0.1} Co _{0.7} Fe _{0.2} O _{3-ð}	0.1 M KOH	260	420	90	Angew. Chem. Int. Ed., 2015, 54, 1-6.
β-Co(OH) ₂ /Ti ^a	1 М КОН	280-290	500-510	/	Chem. Mater., 2013, 25 , 1922-1926.
Au/mCo ₃ O ₄	0.1 M KOH	300	650	46	ChemSusChem, 2014, 7, 82-86.

 Table S2. Comparison of selected recently reported Co-based OER electrocatalysts

 in the basic electrolyte.

^a catalysts directly grown on the conductive substrate.

^b The table was built by the column of the overpotential that reaches to the current density of 10 mA/cm² in a descending order.

^c All the catalysts not mentioned the substrate were dropped on GCEs.

samples	<i>j</i> at $\eta = 320 \text{ mV} (\text{mA/cm}^2)$	TOF at $\eta = 320 \text{ mV} (\text{s}^{-1})$
1.0 V	4.2	0.0051
1.3 V	10	0.0121

Table S3. TOFs of α -Co(OH)₂-Cl pretreated at different potentials (calculated from current density at $\eta = 320$ mV).