Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supporting Information

A Feasible Scalable Porphyrin Dye for Dye-Sensitized Solar Cells under One Sun and Dim

Light Environments

Yu-Chieh Liu,^{a+} Hsien-Hsin Chou,^{b+} Feng-Yi Ho,^b Hsiang-Jung Wei,^b Tzu-Chien Wei^{*a} and Chen-Yu Yeh^{*b}

^aDepartment of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan

^bDepartment of Chemistry and Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, Taichung 402, Taiwan

E-mail: <u>tcwei@mx.nthu.edu.tw</u>, <u>cyyeh@dragon.nchu.edu.tw</u>

Keywords: porphyrin, dye, solar cells, dim light, synthesis

⁺The authors contribute equally to this work.

Figure S1. UV-vis absorption and emission spectra of Y1A1 in THF.

Figure S2. Thin-film absorption spectra of Y1A1 on TiO₂ with and without the presence of CDCA.

Figure S3. (a) Cyclic voltammegram of Y1A1 and (b) energy level diagram of Y1A1-based DSC.

Figure S4. Representation of proposed density of states showing the influence of additives and CDCA.

Figure S5. Preliminary thermal aging test on Y1A1-sensitized cells by a simulated indoor condition profile

Figure S6. Nyquist plot and impedance elements of Y1A1 aged cell and fresh cell after a simulated indoor condition profile.

		Photophysical properties			Energy l	evels	Best device performance							
Entry	Porphyrin dye	$\lambda_{ m abs}$ (ɛ), $\lambda_{ m em}$, E_0 nm (10 ³ nm e ³ M ⁻¹ cm ⁻¹)		E ₀₋₀ , eV	E _{1/2} (ox), E ₀₋₀ *, V V		V _{oc} , J _{sc} , V mA cm ⁻²		FF PCE, %		E ^a	Co-sensitizer	Ref.	
1	$C_{\theta}H_{17} - C_{\theta}H_{17} - $	459 (300), 678 (12.8)	694	1.81	+0.85	-0.99	0.66	18.60	0.75	9.22	A	×	This work	
2	$\begin{array}{c} C_{12}H_{23}O & \downarrow OC_{12}H_{25} \\ C_{0}H_{17} & \downarrow O & \downarrow OC_{12}H_{25} \\ C_{0}H_{17} & \downarrow O & \downarrow OC_{12}H_{25} \\ \hline C_{12}H_{23}O & \downarrow OC_{12}H_{25} \\ \hline LD16 \end{array}$	461 (224), 671 ()	683 <i>,</i> 746	_	+0.72	-	0.71	20.59	0.70	10.24	A	×	1	
3	$C_{d}H_{g} \rightarrow C_{d}H_{17} \rightarrow C$	459 (22.3), 671 (6.8)	676	1.84	+0.78	-1.06	0.70	14.92	0.72	7.56	A	×	2	
							0.70	16.22	0.70	7.94	А	×		
4	$\begin{array}{c} C_{12}H_{25}O & C_{12}H_{25}\\ \hline \\ C_{12}H_{25}O & C_{12}H_{25}O \\ \hline \\ C_{12}H$	457 (314), 611 (10.7), 663 (77.3)	675	1.86	+0.83	-1.03	0.73	20.0	0.74	10.75	A	$C_{e}H_{13}O$ $C_{e}H_{13}O$ $N - S + C_{e}H_{13}O$ $C_{e}H_{13}O$ $C_{e}H_{13}O$ $KS-3$	3, 4	

Table S1. Comparison of photophysical and electrochemical properties for several porphyrin dyes.

	5		441 (159), 466 (115), 502 (61.5), 679 (75.4)	_	1.71	+0.74	-0.97	0.77	18.43	0.73	10.3	В	×	5
	6	$C_{e}H_{13}O \rightarrow C_{e}H_{17}O \rightarrow C_{e}H_{17}$ $SM315$	440 (105), 454 (117), 581 (12), 668 (53)	732	1.79	+0.88	-0.91	0.91	18.1	0.78	13.0	В	×	6
			448 (212), 581 (12), 645 (31)			+0.82	_	0.83	15.8	0.71	9.4	Α	×	
	7			663	_			0.97	17.3	0.71	11.9	В	×	
		Се ^{H₁₃} Се ^{H₁₇} Се ^{H₁₇ Се^{H₁₇} Се^H}						0.94	17.7	0.74	12.3	В	C _e H ₁₃ O C _e H ₁₃ O C _e H ₁₃ O C _e H ₁₃ O C _e H ₁₃ O V V V V V V V V V V V	7
								0.74	16.7	0.72	8.8	Α	×	
	8	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array}\\ \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} $	444 (217), 589 (10.8), 648 (33.7)	676	1.81	+0.89	-1.09	0.77	18.6	0.76	11	A	С	8
			1	1	1	1	1	0.05	14.5	0.05	0.4	0	^	I

^{*a*} E denotes to electrolyte where electrolyte A is based on I^{-}/I_{3}^{-} and electrolyte B is based on Co(bpy)^{2+/3+}.

Photon	T5-White Fluorescent lamp							T8-V	Vhite Flu	oresce	nt lamp		LED planar light						
flux,	J _{SC} ,	V _{oc} ,	FF	η,	P _{in} ,	P _{Max} ,	J _{SC} ,	V _{oc} ,	FF	η,	P _{in} ,	P _{Max} ,	J _{SC} ,	V _{oc} ,	FF	η,	P _{in} ,	P _{Max} ,	
lux	µAcm⁻²	V		%	µWcm⁻²	µWcm⁻²	µAcm ⁻²	V		%	µWcm⁻²	µWcm⁻²	µAcm⁻²	V		%	µWcm⁻²	µWcm⁻²	
300	52.6	0.467	0.739	19.3	94.01	18.2	45.8	0.471	0.765	17.0	96.8	16.5	_	_	_	_	_	_	
350	50.9	0.471	0.754	16.4	10.11	18.1	47.3	0.472	0.744	14.2	117.0	16.6	56.6	0.476	0.755	19.5	104.3	20.3	
600	81	0.486	0.768	16.1	18.81	30.2	75.1	0.487	0.753	14.3	192.2	27.6	83	0.490	0.772	17.5	179.2	31.4	
900	117	0.500	0.779	16.1	28.24	45.5	114	0.501	0.761	15.0	289.3	43.5	117	0.502	0.768	16.7	269.0	45	
1200	148	0.508	0.761	15.2	37.67	57.2	150	0.510	0.763	15.0	3889	58.4	144	0.510	0.769	15.7	358.4	56.3	
1750	211	0.520	0.762	15.3	54.95	83.8	205	0.521	0.766	14.1	5818	81.9	215	0.523	0.760	16.4	522.3	85.5	
2400	293	0.530	0.766	15.8	75.54	119	293	0.532	0.754	15.3	7671	117	299	0.534	0.755	16.9	716.6	121	
5250	653	0.558	0.769	17.0	1650	280	581	0.556	0.765	13.5	1835	247	634	0.560	0.768	17.4	1567	272	
6000	755	0.561	0.771	17.4	1882	327	687	0.560	0.765	14.5	2029	295	735	0.564	0.762	17.7	1783	316	
7000	876	0.566	0.765	17.4	2186	380	741	0.562	0.765	13.8	2315	319	873	0.570	0.763	18.2	2086	380	

 Table S2. Performance of Y1A1 device illuminated under different light source at varied light intensity.

