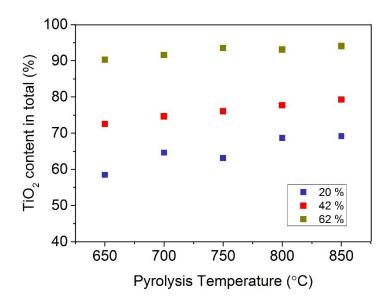
Electronic Supplementary Information for


Poly-(styrene-acrylonitrile) copolymer-derived hierarchical architecture in electrode materials for lithium ion batteries

Lu Jin^a, Guobo Zeng^b, HuaWu^{a*}, MarkusNiederberger^b and Massimo Morbidelli^{a*}

a. Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.

b. Laboratory for Multifunctional Materials, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland.

(1) Characterization of the composition in TiO_2/C materials

Fig. S1 TiO₂ weight fraction from TGA measurements for samples, 20TP, 42TP and 62TP, pyrolyzed at different temperatures.

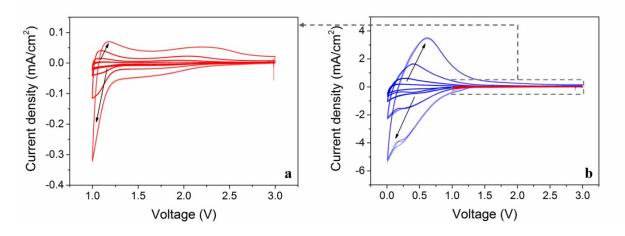
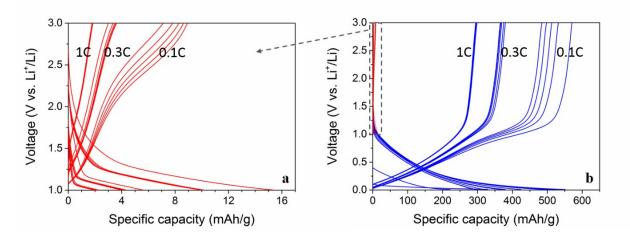

 T, ℃	In 62TP, %	In TP, %	In 20TP, %
650	90.3	72.5	58.5
700	91.6	74.6	64.6
750	93.5	76.0	63.1
800	93.1	77.7	68.7
850	94.0	79.3	69.2

Table S1 TiO2 weight fraction from TGA measurements for samples, 20TP, 42TP and 62TP,pyrolyzed at different temperatures.


Table S2Intensity peak fractions of D1, D3 and G bands in Figure 3c.

Т, °С	D1, %	D3, %	G, %
650	54	21	26
700	47	13	40
750	47	13	40
800	49	10	40
850	50	11	39

(2) Electrochemical performance tests of poly-(styrene-acrylonitrile) derived carbon electrode in the absence of TiO₂

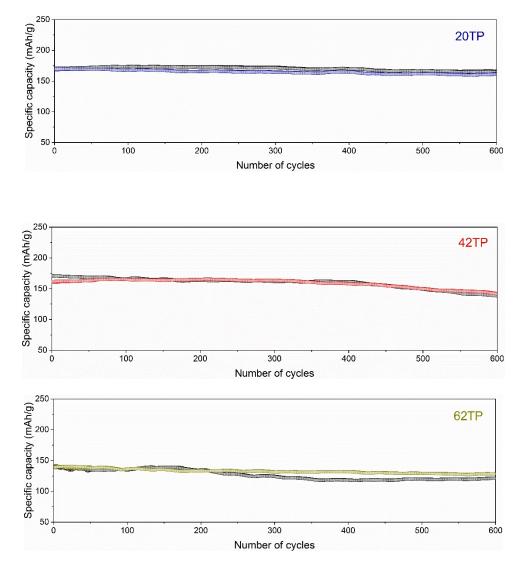


Fig. S2 CV curves of the cells prepared using poly-(styrene-acrylonitrile) derived carbon network as the anode in the absence of TiO₂, in voltage range of (a) 1.0-3.0 V and (b) 0-3.0 V at scan rates of 0.1, 0.33, 0.5 and 1.0 mV/s. It is seen from Fig S2a that in 1.0-3.0 V, the current density is very small, indicating that the intercalation of lithium into the carbon structure within this potential window is rather limited. In Fig. S2b, a broad rectangular shape of redox voltage profile can be seen in 0-1.0 V, while in 1.0-3.0 V, the curves are relatively flat without distinguished redox peaks. Therefore, the capacitive phenomenon enhancing capacity mainly occurs in 0-1.0 V. During the Li intercalation process, an evident peak is detected around 0.25-0.5 V, which is attributed to the formation of the SEI film on the surface of carbon, resulting in the irreversible consumption of Li ions in electrolyte.

Fig. S3 Charge/discharge specific capacity of the cells prepared using poly-(styrene-acrylonitrile) derived carbon network as the anode in the absence of TiO_2 , in the voltage range of (a) 1.0-3.0 V and (b) 0-3.0 V at different C rates. (1C=165 mAh/g). From Fig. S3a, the specific capacity is only around 2 mAh/g at 1C. In Fig. S3b, considerable capacity (~300 mAh/g at 1C current density) is obtained in the voltage range, 0-1.0 V. Still, the capacity contribution in 1.0-3.0 V is negligible, which is in coherence with the results in Fig. S2 and in the literature.

(3) Repetition tests of long-term cycling performance of various composite samples.

Fig. S4 Repeated tests of long-term cycling performance of various composite samples (black curves stand for another running).