Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

## Electronic supplementary information for

# Journal of Materials Chemistry A

# Size Effects of Graphene Oxide Nanosheets for Construction of Three-

### **Dimensional Graphene-Based Macrostructures as Adsorbents**

Yi Shen<sup>1,2</sup>, Xiaoying Zhu<sup>1,2</sup>, and Baoliang Chen<sup>1,2</sup>\*

(1 Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; 2

Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou

310058, China)

\*Corresponding Author Phone & Fax: 86-571-88982587

Email: <u>blchen@zju.edu.cn</u>

Supporting Information consists of 17 pages, including this one.

There are 7 Tables and 4 Figures.

Materials and Characterization. SGO was synthesized from natural Graphite flake (325 mesh, 99.8%, Alfa Aesar) by a modified Hummers Method. Generally, the graphite powder (10 µm, 10 g) was added into an 80 °C solution of concentrated H<sub>2</sub>SO<sub>4</sub> (40 mL) which contained  $K_2S_2O_8$  (8.33 g) and  $P_2O_5$  (8.33 g), then kept at 80 °C for 4.5 h. After that, the mixture was collected and rinsed with deionized water until the pH became neutral, dried in the oven overnight at 60 °C, as preoxidized graphite obtained. The preoxidized graphite powder (10 g) and NaNO<sub>3</sub> (5 g) were put into cold (0 °C) concentrated H<sub>2</sub>SO<sub>4</sub> (230 mL) in an ice bath, and KMnO<sub>4</sub> (30 g) was slowly added with continuously stirring to keep the temperature below 4 °C. Then the mixture was stirred at 35 °C for 2 h, after which deionized water (460 mL) was gradually added, producing much heat. The mixture was further stirred for 15 min at 98 °C to increase the oxidation level, the reaction was terminated by adding deionized water (460 mL) and 30% H<sub>2</sub>O<sub>2</sub> solution (25 mL), so as to obtain graphite oxide. The resultant bright yellow mixture was rinsed by 10% HCl solution (3.6 L) to remove the residual SO<sub>4</sub><sup>2-</sup> (checked by 0.01mol/L BaCl<sub>2</sub>) and metal ions, followed by centrifugation at 8000 rpm, then the solid phase was redispersed in deionized water and peeled by ultrasonication for 30 min at the power of 250W. The centrifugation and ultrasonication were recycled for 3 times, then the solution was subjected to dialysis to remove the acid and other impurities.

Atomic force microscopy (AFM) images of graphene or graphene oxide on a freshly cleaved mica surface were taken using a Nanoscope III in tapping mode with a NSC14/no Al probe (Dimension icon, Veeco). After sonication for 5 minutes, a droplet of graphene dispersion (or graphene oxide dispersion) ~0.01 mg/mL was cast onto a freshly cleaved mica

surface. The sample was kept at room temperature overnight to let the water evaporate. The FTIR spectra were recorded in the 4000-400 cm<sup>-1</sup> region with a resolution of 4 cm<sup>-1</sup> using a Bruker Vector 22 FTIR spectrometer.

**Characterization of 3D GBM.** The surface morphologies of 3D GBM were characterized through KYKY-3200 scanning electron microscopy (SEM). The Brunauer-Emmett-Teller (BET) nitrogen specific surface areas and pore volume were determined by nitrogen adsorption-desorption at -196°C with a NOVA-2000E surface area and pore volume analyzer. Raman spectra were obtained with a LabRamHRUV Raman spectrometer (JDbin-yvon, FR); the laser excitationwas provided by an Ar+ laser at a wavelength of 514 nm. The XPS experiments were performed on a VG Escalab Mark II with a resolution below 0.2 eV, and the C1s peak spectra were analyzed using XPS Peak 4.1 software. The FTIR spectra were recorded in the 4000-400 cm<sup>-1</sup> region with a resolution of 4 cm<sup>-1</sup> using a Bruker Vector 22 FTIR spectrometer.

The Adsorption Kinetics Experiment. Methylene blue (98%+. Acros Organics) and Cd<sup>2+</sup> (98%+, Sinopharm Chemical Reagents Co. Ltd. (China)) were selected as model pollutants. The Time-dependent adsorptions of 3D GBM (3D GGO0.8, 3D GGO1, 3D GGO3, 3D GGO5, 3D GGO10, 3D BGO3, 3D BGO5, 3D BGO10, 3D SGO5, 3D SGO10, 3D rGGO3, 3D rGGO5, 3D rGGO10, 3D rBGO3, 3D rBGO5, 3D rBGO10, 3D rSGO5, 3D rSGO5, 3D rSGO10) were conducted with an initial MB and Cd<sup>2+</sup> concentration of 5 and 10 mg/L, respectively. The solid-to-water ratios for 3D GBM were 0.8-10 mg per 500 mL. The remaining concentrations in a series of independent samples were measured from 0 min to 2880 min for MB and Cd<sup>2+</sup>. MB solution was measured using an UV/Vis spectrometer and

calculated by the absorbance at 664 nm, and  $Cd^{2+}$  was analyzed with a Perkin-Elmer Analyst 700 (PE700, USA) atomic absorption spectrometer. The removal rate (%) and specific adsorbed amount (*Q*) of pollutant (MB and  $Cd^{2+}$ ) was calculated according to the following equation:

Removal rate (%) = 
$$(C_0 - C_t) / C_0 \times 100\%$$
 (1)

$$Q = (C_0 - C_t) \times V/m \tag{2}$$

where  $C_0$  and  $C_t$  are the initial and specific time (t) concentrations of pollutants (mg/L); V is the volume of aqueous solution (mL); and m is the mass of the 3D GBM (mg).

**The Column Experiment**. Six samples of 3D GBM (e.g., 3D GGO5, 3D GGO10, 3D BGO5, 3D BGO10, 3D SGO5, 3D SGO10) were prepared and conducted as column experiment to measure the adsorption capacity of MB and  $Cd^{2+}$ . The adsorbed capacity (*Q*) of pollutant (MB and  $Cd^{2+}$ ) was calculated according to the following equation:

$$Q = Q_1 + Q_2 + \dots + Q_n$$
 (3)

$$Q_{\rm n} = (C_0 - C_{\rm n}) \times V/(m \times 1000) \tag{4}$$

where  $Q_n$  was the adsorption capacity of the column volume in specific number (*n*);  $C_0$  is the initial concentrations of pollutants (mg/L);  $C_n$  is the effluent concentration of pollutant in specific number column volume (mg/L); *V* is the column volume (mL); and *m* is the mass of the 3D GBM (mg).

The Soaked Method (for diesel). The soaked method was applied in the 12 samples of 3D GBM (e.g., 3D GGO5, 3D GGO10, 3D BGO5, 3D BGO10, 3D SGO5, 3D SGO10 and 3D rGGO5, 3D rGGO10, 3D rBGO5, 3D rBGO10, 3D rSGO5, 3D rSGO10) to measure the absorption capacity (Q) of diesel. Q was obtained using the following equation:

$$Q = (M - M_0)/M_0$$
(5)

where  $M_0$  and M are the weights of 3D GBM before and after absorption,<sup>24</sup> respectively.

Kinetic Models. The pseudo first-order model can be presented as:

$$\ln(Q_e - Q_t) = \ln Q_e - k_1 t \tag{6}$$

Where  $k_1$  is the rate constant of the pseudo first-order model of adsorption (1/h);  $Q_e$  and  $Q_t$  is the absorbed amount of sorbate at equilibrium and at different time (mg/g), respectively. The values of  $k_1$  and  $Q_e$  can be determined from the slope and intercept of linear fittings of  $\ln(Q_e - Q_t)$  versus *t*. The pseudo second-order model is given by:

$$t/Q_t = 1/k_2 Q_e^2 + t/Q_e$$
(7)

where  $k_2$  is the rate constant of the pseudo second-order model of adsorption (g/(mg·h)), while  $Q_e$  and  $Q_t$  are defined the same as the parameters in the pseudo first-order model. The values of  $k_2$  and  $Q_e$  can be determined from the slope and intercept of linear fittings of  $t/Q_t$ versus t.

**Diffusion Model.** To gain insight into the adsorption mechanism and rate controlling steps that affects the kinetics of adsorption, the intraparticle diffusion model is applied:

$$Q_{\rm t} = k_{\rm pi} t^{1/2} + C_{\rm i} \tag{8}$$

where,  $k_{pi}$  (mg/g·min<sup>1/2</sup>) is the intraparticle diffusion rate constant of stage i, and  $C_i$  (mg/g) is the intercept of stage i. To follow the data points, the intraparticle diffusion model can be described as a successive process of sorbate diffusion through the boundary layer and intraparticle, namely the adsorbate molecules move slowly from larger pores to micropores.<sup>16,22,63</sup>  $C_1$  values give information about the thickness of the boundary layer, that is, the larger the intercept, the greater the boundary-layer effect.

#### **Pores Semi-Quantitative Models**

#### **Single Pore Volume**

$$V_{\text{single pore}} = xL^3$$
 (9)

where  $V_{\text{single pore}}$  (cm<sup>3</sup>) means the single pore volume in the 3D GBM, L means the side length of graphene (cm).

#### **Porous Ratio**

$$P = V_{\text{pores}} / V_{\text{total}} = 1 - V_{\text{virtual}} / V_{3D \text{ structure}} \sim 1 - V_{\text{graphene particle}} / V_{3D \text{ structure}}$$
(10)  
$$V_{\text{graphene particle}} = 1.06 \text{ m}_{\text{graphene particle}} (\rho_{\text{graphene particle}} \sim 1.06 \text{ g/cm}^3)$$
(11)

where *P* means the porous ratio,  $V_{\text{pores}}$  (cm<sup>3</sup>) means the pore volume in the 3D GBM,  $V_{3D}$ structure (cm<sup>3</sup>) means the volume of 3D GBM,  $V_{\text{virtual}}$  (cm<sup>3</sup>) means the actual volume of graphene in the 3D GBM, which is equal to  $V_{\text{graphene particle}}$  (cm<sup>3</sup>) on the hypothesis of the volume of each graphene particle didn't change before and after forming the 3D GBM.  $m_{\text{graphene particle}}$  (mg) means the quality of graphene particles.

#### **Porous Amount**

$$n = V_{\text{pores}} / V_{\text{single pore}} = V_{3D \text{ structure}} \times P / V_{\text{single pore}}$$
(12)

where n means the porous amount.

| sample   | C/0  | C-C /C=C | C-0  | C=O  | <b>O-C=O</b> | -СООН    | -ОН, -О- |
|----------|------|----------|------|------|--------------|----------|----------|
|          |      |          |      |      |              | (mmol/g) | (mmol/g) |
| 3D GGO5  | 2.61 | 0.24     | 0.56 | 0.16 | 0.05         | 2.55     | 30.7     |
| 3D BGO5  | 3.13 | 0.36     | 0.50 | 0.10 | 0.04         | 2.42     | 29.2     |
| 3D SGO5  | 2.84 | 0.48     | 0.39 | 0.11 | 0.02         | 1.20     | 22.0     |
| 3D rGGO5 | 9.50 | 0.69     | 0.14 | 0.09 | 0.07         |          | 9.55     |
| 3D rBGO5 | 8.83 | 0.71     | 0.15 | 0.09 | 0.05         |          | 10.5     |
| 3D rSGO5 | 9.78 | 0.69     | 0.15 | 0.10 | 0.05         |          | 10.0     |
|          |      |          |      |      |              |          |          |

Table S-1. The distribution of surface functional groups of 3D GBM derived from XPS data.

| pollutant | adsorbent | pseudo first-order model     |                        | pseudo second-order model |                    |                    |                       |
|-----------|-----------|------------------------------|------------------------|---------------------------|--------------------|--------------------|-----------------------|
|           |           | <i>q</i> <sub>e</sub> (mg/g) | k <sub>1</sub> (1/min) | <b>R</b> <sup>2</sup>     | $q_{\rm e}$ (mg/g) | $k_2$ (g/(mg·min)) | <i>R</i> <sup>2</sup> |
| MB        | 3D GGO10  | 112                          | 0.0323                 | 0.972                     | 118                | 0.000251           | 0.996                 |
|           | 3D GGO5   | 156                          | 0.0570                 | 0.990                     | 163                | 0.000268           | 0.992                 |
|           | 3D GGO3   | 178                          | 0.0423                 | 0.989                     | 187                | 0.0003201          | 0.994                 |
|           | 3D GGO1   | 249                          | 0.0659                 | 0.965                     | 261                | 0.000306           | 0.980                 |
|           | 3D GGO0.8 | 277                          | 0.0466                 | 0.982                     | 291                | 0.000467           | 0.987                 |
|           | 3D BGO10  | 107                          | 0.0321                 | 0.981                     | 113                | 0.000240           | 0.998                 |
|           | 3D BGO5   | 141                          | 0.0607                 | 0.987                     | 147                | 0.000277           | 0.993                 |
|           | 3DBGO3    | 153                          | 0.0331                 | 0.988                     | 161                | 0.0003457          | 0.996                 |
|           | 3D SGO10  | 97.1                         | 0.0263                 | 0.991                     | 102                | 0.000230           | 0.998                 |
|           | 3D SGO5   | 126                          | 0.0139                 | 0.974                     | 130                | 0.000240           | 0.986                 |
|           | 3D rGGO10 | 28.7                         | 0.0585                 | 0.987                     | 30.0               | 0.0000373          | 0.990                 |
|           | 3D rGGO5  | 38.1                         | 0.0587                 | 0.991                     | 39.8               | 0.0000484          | 0.991                 |
|           | 3D rGGO3  | 43.3                         | 0.0126                 | 0.977                     | 45.3               | 0.0000563          | 0.996                 |
|           | 3D rBGO10 | 25.1                         | 0.0446                 | 0.970                     | 26.5               | 0.0000440          | 0.993                 |
|           | 3D rBGO5  | 33.8                         | 0.0401                 | 0.956                     | 35.5               | 0.0000612          | 0.991                 |
|           | 3D rBGO3  | 32.3                         | 0.0155                 | 0.987                     | 33.7               | 0.0000837          | 0.992                 |
|           | 3D rSGO10 | 17.0                         | 0.0282                 | 0.968                     | 17.7               | 0.0000406          | 0.992                 |
|           | 3D rSGO5  | 24.3                         | 0.00391                | 0.917                     | 26.2               | 0.0000552          | 0.948                 |

Table S-2. Adsorption kinetic parameters of methylene blue (MB) onto 3D GBM.

| pollutant        | adsorbent | pseudo first-order model     |                               | pseudo second-order model |                    |                    |                       |
|------------------|-----------|------------------------------|-------------------------------|---------------------------|--------------------|--------------------|-----------------------|
|                  |           | <i>q</i> <sub>e</sub> (mg/g) | <i>k</i> <sub>1</sub> (1/min) | <i>R</i> <sup>2</sup>     | $q_{\rm e}$ (mg/g) | $k_2$ (g/(mg·min)) | <i>R</i> <sup>2</sup> |
| Cd <sup>2+</sup> | 3D GGO10  | 61.0                         | 0.0456                        | 0.985                     | 64.0               | 0.000102           | 0.996                 |
|                  | 3D GGO5   | 75.3                         | 0.0470                        | 0.987                     | 79.2               | 0.000122           | 0.998                 |
|                  | 3D GGO3   | 82.5                         | 0.0643                        | 0.984                     | 86.71              | 0.000132           | 0.988                 |
|                  | 3D GGO1   | 94.7                         | 0.0557                        | 0.988                     | 99.4               | 0.000134           | 0.991                 |
|                  | 3D GGO0.8 | 106                          | 0.0675                        | 0.978                     | 111                | 0.000143           | 0.990                 |
|                  | 3D BGO10  | 55.0                         | 0.0507                        | 0.982                     | 57.7               | 0.0000841          | 0.994                 |
|                  | 3D BGO5   | 64.2                         | 0.0318                        | 0.991                     | 67.6               | 0.000102           | 0.995                 |
|                  | 3DBGO3    | 79.3                         | 0.0336                        | 0.987                     | 83.2               | 0.000115           | 0.998                 |
|                  | 3D SGO10  | 48.1                         | 0.0467                        | 0.994                     | 50.5               | 0.0000785          | 0.994                 |
|                  | 3D SGO5   | 55.4                         | 0.0875                        | 0.979                     | 57.7               | 0.0000875          | 0.995                 |
|                  | 3D rGGO10 | 18.1                         | 0.0442                        | 0.990                     | 19.0               | 0.0000315          | 0.994                 |
|                  | 3D rGGO5  | 15.8                         | 0.0177                        | 0.977                     | 16.6               | 0.0000453          | 0.996                 |
|                  | 3D rGGO3  | 18.1                         | 0.0257                        | 0.978                     | 19.0               | 0.0000517          | 0.995                 |
|                  | 3D rBGO10 | 13.7                         | 0.0313                        | 0.991                     | 14.5               | 0.0000333          | 0.992                 |
|                  | 3D rBGO5  | 11.8                         | 0.0224                        | 0.991                     | 12.4               | 0.0000383          | 0.996                 |
|                  | 3D rBGO3  | 13.1                         | 0.0423                        | 0.983                     | 13.8               | 0.0000346          | 0.984                 |
|                  | 3D rSGO10 | 8.62                         | 0.0433                        | 0.987                     | 9.08               | 0.0000154          | 0.990                 |
|                  | 3D rSGO5  | 9.74                         | 0.0466                        | 0.967                     | 10.2               | 0.0000159          | 0.992                 |

Table S-3. Adsorption kinetic parameters of cadmium (Cd<sup>2+</sup>) onto 3D GBM.

| samples  |                 | MB                    |       |                 | Cd <sup>2+</sup>      |                       |  |
|----------|-----------------|-----------------------|-------|-----------------|-----------------------|-----------------------|--|
|          | k <sub>p1</sub> | <i>C</i> <sub>1</sub> | $R^2$ | k <sub>p1</sub> | <i>C</i> <sub>1</sub> | <b>R</b> <sup>2</sup> |  |
| 3D GGO10 | 7.96            | 8.07                  | 0.903 | 4.85            | 4.03                  | 0.914                 |  |
| 3D BGO10 | 7.80            | 6.49                  | 0.911 | 4.38            | 4.34                  | 0.906                 |  |
| 3D SGO10 | 7.27            | 2.21                  | 0.906 | 3.70            | 4.01                  | 0.927                 |  |
| 3D GGO5  | 11.7            | 19.1                  | 0.893 | 5.64            | 2.27                  | 0.932                 |  |
| 3D BGO5  | 10.7            | 17.9                  | 0.917 | 4.86            | 2.28                  | 0.915                 |  |
| 3D SGO5  | 9.33            | 8.03                  | 0.924 | 4.08            | 10.6                  | 0.911                 |  |
|          |                 |                       |       |                 |                       |                       |  |

Table S-4. Diffusion model parameters of the stage 1 of MB and Cd<sup>2+</sup> onto3D GBM.

| adsorbent | MB qe (mg/g) | q <sub>e</sub> (mmol/g) | $Cd^{2+}$ $q_e$ (mg/g) | q <sub>e</sub> (mmol/g) |
|-----------|--------------|-------------------------|------------------------|-------------------------|
| 3D GGO10  | 164          | 0.512                   | 89.3                   | 0.794                   |
| 3D GGO5   | 182          | 0.569                   | 104                    | 0.925                   |
| 3D BGO10  | 137          | 0.428                   | 77.8                   | 0.692                   |
| 3D BGO5   | 164          | 0.513                   | 91.7                   | 0.816                   |
| 3D SGO10  | 111          | 0.347                   | 60.4                   | 0.537                   |
| 3D SGO5   | 142          | 0.444                   | 79.8                   | 0.710                   |

Table S-5. Adsorption capacity of methylene blue (MB) and cadmium (Cd<sup>2+</sup>) onto 3D GBM column.

| adsorbent | $q_{ m e}$ (mg/g) | adsorbent | <i>q</i> <sub>e</sub> (mg/g) |
|-----------|-------------------|-----------|------------------------------|
| 3D GGO10  | 77.0              | 3D rGGO10 | 79.1                         |
| 3D GGO5   | 95.0              | 3D rGGO5  | 147                          |
| 3D GGO3   | 100               | 3D rGGO3  | 193                          |
| 3D BGO10  | 70.0              | 3D rBGO10 | 73.4                         |
| 3D BGO5   | 89.2              | 3D rBGO5  | 124                          |
| 3D BGO3   | 98.4              | 3D rBGO3  | 167                          |
| 3D SGO10  | 68.0              | 3D rSGO10 | 71.7                         |
| 3D SGO5   | 80.9              | 3D rSGO5  | 110                          |

Table S-6. Absorption capacity of diesel onto 3D GBM.

| samples   | single pore volume (cm <sup>3</sup> ) | pore ratio | pore amount |
|-----------|---------------------------------------|------------|-------------|
| 3D GGO10  | 2.70E-08                              | 0.991      | 3.67E+07    |
| 3D GGO5   | 2.70E-08                              | 0.995      | 3.69E+07    |
| 3D GGO4   | 2.70E-08                              | 0.996      | 3.69E+07    |
| 3D GGO3   | 2.70E-08                              | 0.997      | 3.69E+07    |
| 3D GGO2   | 2.70E-08                              | 0.998      | 3.70E+07    |
| 3D GGO1   | 2.70E-08                              | 0.999      | 3.70E+07    |
| 3D GGO0.8 | 2.70E-08                              | 0.999      | 3.70E+07    |
| 3D BGO10  | 1.00E-09                              | 0.991      | 9.91E+08    |
| 3D BGO5   | 1.00E-09                              | 0.995      | 9.95E+08    |
| 3D BGO4   | 1.00E-09                              | 0.996      | 9.96E+08    |
| 3D BGO3   | 1.00E-09                              | 0.997      | 9.97E+08    |
| 3D SGO10  | 3.38E-12                              | 0.991      | 2.94E+11    |
| 3D SGO5   | 3.38E-12                              | 0.995      | 2.95E+11    |

Table S-7. Pore volume, pore ratio and pore amount of 3D GBM predicted theoretically.



Figure S-1. The photos of (a) cryo tubes (b) GO suspension (c) GO aerogel.



Figure S-2. Raman of 3D rSGO5, 3D rBGO5, 3D rGGO5, 3D SGO5, 3D BGO5, and 3D GGO5.



**Figure S-3.** FTIR of building blocks (GGO, BGO, and SGO), and the 3D GBM at the oxidized states (3D GGO5, 3D BGO5, and 3D SGO5) and at the reduced state (3D rGGO5, 3D rBGO5, and 3D rSGO5).



**Figure S-4.** MB/Cd<sup>2+</sup> diffusion model onto 3D GGO10, 3D BGO10, 3D SGO10 and 3D GGO5, 3D BGO5, and 3D SGO5.