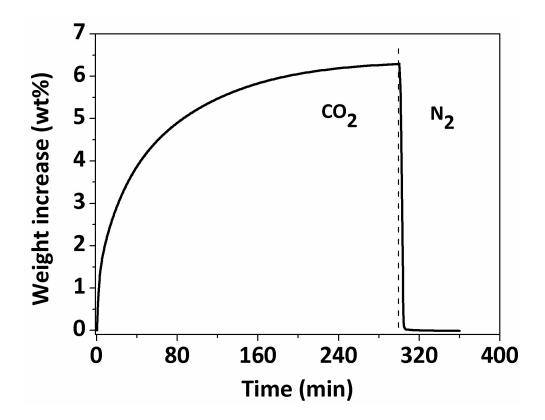
Supplementary information

Unexpected highly reversible topotacticCO₂ sorption/desorption capacity for potassium dititanate

Qianwen Zheng¹, Liang Huang¹, Yu Zhang¹, Junya Wang¹, Chen-Zi Zhao², Qiang Zhang², Weijie Zheng³, Dapeng Cao³, Dermot O'Hare⁴, Qiang Wang^{1,*}


¹College of Environmental Science and Engineering, Beijing Forestry University, 35 Tsinghua East Road, Haidian District, Beijing 100083, P. R. China
²Department of Chemical Engineering, Tsinghua University, 1 Tsinghua Road, Haidian District, Beijing 100084, P. R. China
³Division of Molecular and Materials Simulation, State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
⁴Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom

*Corresponding author:

Professor Qiang Wang, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P. R. China

Tel.: 86-13699130626

E-mail: qiang.wang.ox@gmail.com; qiangwang@bjfu.edu.cn

Figure S1. One CO₂ sorption/desorption cycle over $K_2Ti_2O_5$ both tested at 750 °C, which clearly indicates that the regeneration of the adsorbent $K_2Ti_2O_5$ in N₂ is very rapid (< 6 min).

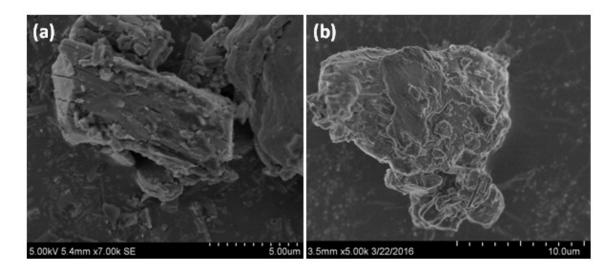
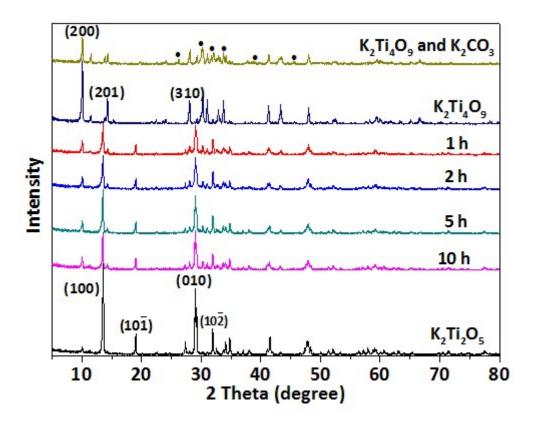



Figure S2. SEM images of (a) fresh $K_2Ti_2O_5$, and (b) $K_2Ti_2O_5$ thermally treated at 750 °C in N₂ for 10.0 h.

Figure S3. XRD patterns of fresh $K_2Ti_2O_5$, the mixture of $K_2Ti_4O_9$ and K_2CO_3 , and the thermally treated mixture of $K_2Ti_4O_9$ and K_2CO_3 with a ratio of 1:1 at 750 °C for 1.0, 2.0, 5.0, and 10.0 h, respectively, (•) K_2CO_3 .