Supporting Information for

Nitrogen-Doped Mesoporous Carbon Nanosheet/Carbon Nanotube Hybrids as Metal-Free Bi-functional electrocatalysts for Water Oxidation and Oxygen Reduction

Xinzhe Li, Yiyun Fang, Shiling Zhao, Juntian Wu, Feng Li, Min Tian, Xuefeng Long, Jun Jin* and Jiantai Ma*

State Key Laboratory of Applied Organic Chemistry, The Key Laboratory of Catalytic Engineering of Gansu Province and Chemical Engineering, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China. *E-mail: jinjun@lzu.edu.cn, majiantai@lzu.edu.cn.

Fig. S1 TEM images of (a) N-MCN, (b) N-MCN/CNTs, (c) mixed N-MCN+CNTs, and

(d) EDX characterization.

Fig. S2 SEM images to show the homogeneity in morphology and its structure of N-MCN/CNTs (images c-f are local image of b).

Fig. S3 Nitrogen adsorption–desorption isotherms of N-MCN and N-MCN/CNTs (inset: the corresponding pore-size distributions curves).

Fig. S4 (a) LSVs of N-MCN/CNTs in 0.1 M and 1.0 M KOH solutions, respectively.(b) Chronopotentiometric response of N-MCN/CNTs in 1.0 M KOH solution as compared to that obtained for IrO₂ catalyst.

Fig. S5 LSVs of commercial 20% Pt/C catalyst in O_2 -saturated 0.1M KOH with a sweep rate of 5 mV s⁻¹ at the different rotation rates.

Table S1 XPS results of N-MCN/CNTs on the atomic percentages of C, N, O and the

N distributions.

C (%)	N (%)	O (%)	N distribution (%)					
			pyridinic N	pyrrolic N	graphitic N	oxygenated N		
85.1	10.7	4.2	37.7	20.5	31.6	10.2		

Catalysts	Onset potential	η@10.0 mA cm ⁻²	Tafel slope	Catalyst loadings	Electrolyte	Reference
	(V)	(V)	(mV dec ⁻¹)	(mg cm ⁻²)		
N-MCN/CNTs	1.50	0.32	55	0.21	0.1 M KOH	This work
	1.46	0.28	39	0.21	1.0 M KOH	This work
g-C₃N₄ NS-CNT	1.53	0.37	83	0.20	0.1 M KOH	1
	1.47	~0.29	/	0.20	1.0 M KOH	1
N/C	~1.50	0.38	/	0.20	0.1 M KOH	2
N,P-GCNS	1.32	0.34	70	0.14	0.1 M KOH	3
NGSH	~1.44	0.40	83	0.25	0.1 M KOH	4
NPMC-1000	~1.30	~0.60	/	0.15	0.1 M KOH	5
OCC-8	~1.57	0.48	82	/	0.1 M KOH	6
g-C ₃ N ₄ /graphene	1.5	0.54	68.5	0.48	0.1 M KOH	7
Fe ₃ C@NG800-0.2	~1.50	0.36	62	0.20	0.1 M KOH	8
Au@Co ₃ O ₄ /C	~1.51	0.35	60	0.20	0.1 M KOH	9
Ni-P	1.48	0.30	64	0.20	1.0 M KOH	10
Ni–Co ADHs nanocages	1.50	0.35	65	0.2	1.0 M KOH	11
Co-P/NC	~ 1.50	0.32	52	0.28	1.0 M KOH	12
N-CG–CoO	~ 1.52	0.34	71	0.71	1.0 M KOH	13
Co ₃ O ₄ @C-MWCNTs	1.50	320	62	0.33	1.0 M KOH	14
FeNi@NC	1.44	0.28	70	0.32	1.0 M NaOH	15

Table S2 Comparison of the OER activity for several recently reported highperformance OER catalysts.

NiCo-LDH	~ 1.52	0.37	40	0.17	1.0 M KOH	16
Ni ₂ P	~ 1.47	0.29	1	0.14	1.0 M KOH	17
CoOx@CN	1.51	~0.33	60	0.14	1.0 M KOH	18
CNTs-Au@Co ₃ O ₄	1.52	0.35	68	0.36	1.0 M KOH	19
Zn _x Co _{3-x} O ₄ nanowire	~ 1.50	0.32	51	1.0	1.0 M KOH	20

Notes: For the convenience of comparison, the measure potentials vs. Ag/AgCl were converted to a reversible hydrogen electrode (RHE) scale accorting to the Nerst equation ($E_{RHE} = E_{Ag/AgCl} + 0.059 \times pH + 0.198$).

Table	S3	Comparison	of	the	ORR	activity	for	several	recently	reported	high
perform	nanc	ce ORR cataly	sts	(elec	tro rota	ating spee	ed is	1600 rpi	n).		

Catalysts	Onset	Half-wave	Electron transfer	Catalyst loadings	Electrolyte	Reference
	potential (V)	potential (V)	numbers	(mg cm ⁻²)		
N-MCN/CNTs	0.95	0.82	3.8-3.9	0.21	0.1 M KOH	This work
N-doped porous C	0.86	0.7	3.3-3.9	0.20	0.1 M KOH	21
N,P-doped C fiber	0.88	0.79	~ 4	0.10	0.1 M KOH	22
NG-NCNT	0.87	/	3.7	0.05	0.1 M KOH	23
NC900	0.83	~0.68	3.3	0.034	0.1 M KOH	24
N,S,O-OMC	0.85	~0.79	3.5	0.16	0.1 M KOH	25
CoP NCs	0.80	0.70	3.5	0.28	0.1 M KOH	26
Pt/CaMnO ₃	0.90	~0.79	3.9	0.09	0.1 M KOH	27

NC-NZ-13	~ 0.98	~ 0.84	~ 4	0.21	0.1 M KOH	28
meso/micro-P <i>o</i> PD	~ 1	0.87	3.97	0.5	0.1 M KOH	29
NC-A	~ 0.975	0.832	0.372	0.128	0.1 M KOH	30
NDCN-22	0.955	0.855	3.67–3.94	0.6	0.1 M KOH	31
NG-900	0.935	~ 0.785	3.70	0.051	0.1 M KOH	32
NG/Fe _{10.0}	0.961	~ 0.74	3.91	0.051	0.1 M KOH	32

Notes: For the convenience of comparison, the measure potentials vs. Ag/AgCl were converted to a reversible hydrogen electrode (RHE) scale accorting to the Nerst equation ($E_{RHE} = E_{Ag/AgCl} + 0.059 \times pH + 0.198$).

- 1. T. Y. Ma, S. Dai, M. Jaroniec and S. Z. Qiao, *Angew. Chem. Int. Ed.*, 2014, **53**, 7281-7285.
- Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi and K. Hashimoto, *Nat. Commun*, 2013, 4, 2390.
- 3. R. Li, Z. Wei and X. Gou, ACS Catal., 2015, 5, 4133-4142.
- G. L. Tian, M. Q. Zhao, D. Yu, X. Y. Kong, J. Q. Huang, Q. Zhang and F. Wei, *Small*, 2014, 10, 2251-2259.
- 5. J. Zhang, Z. Zhao, Z. Xia and L. Dai, *Nat. Nanotechnol.*, 2015, **10**, 444-452.
- N. Cheng, Q. Liu, J. Tian, Y. Xue, A. M. Asiri, H. Jiang, Y. He and X. Sun, *Chem. Commun.*, 2015, **51**, 1616-1619.
- J. Tian, Q. Liu, A. M. Asiri, K. A. Alamry and X. Sun, *ChemSusChem*, 2014, 7, 2125-2130.
- 8. H. Jiang, Y. Yao, Y. Zhu, Y. Liu, Y. Su, X. Yang and C. Li, *ACS Appl. Mater. Interfaces*, 2015, 7, 21511-21520.
- 9. Z. Zhuang, W. Sheng and Y. Yan, Adv. Mater., 2014, 26, 3950-3955.
- 10. X.-Y. Yu, Y. Feng, B. Guan, X. W. Lou and U. Paik, *Energy Environ. Sci.*, 2016, 9, 1246-1250.
- J. Nai, H. Yin, T. You, L. Zheng, J. Zhang, P. Wang, Z. Jin, Y. Tian, J. Liu, Z. Tang and L. Guo, *Adv. Energy Mater.*, 2015, 5, 1401880.
- B. You, N. Jiang, M. Sheng, S. Gul, J. Yano and Y. Sun, *Chem. Mater.*, 2015, 27, 7636-7642.
- 13. S. Mao, Z. Wen, T. Huang, Y. Hou and J. Chen, *Energy Environ. Sci.*, 2014, 7, 609-616.

- X. Li, Y. Fang, X. Lin, M. Tian, X. An, Y. Fu, R. Li, J. Jin and J. Ma, *J. Mater. Chem. A*, 2015, **3**, 17392-17402.
- 15. X. Cui, P. Ren, D. Deng, J. Deng and X. Bao, *Energy Environ. Sci.*, 2016, 9, 123-129.
- H. Liang, F. Meng, M. Caban-Acevedo, L. Li, A. Forticaux, L. Xiu, Z. Wang and S. Jin, Nano Lett., 2015, 15, 1421-1427.
- 17. L.-A. Stern, L. Feng, F. Song and X. Hu, *Energy Environ. Sci.*, 2015, **8**, 2347-2351.
- S. Zhao, C. Li, J. Liu, N. Liu, S. Qiao, Y. Han, H. Huang, Y. Liu and Z. Kang, *Carbon*, 2015, **92**, 64-73.
- 19. Y. Fang, X. Li, Y. Hu, F. Li, X. Lin, M. Tian, X. An, Y. Fu, J. Jin and J. Ma, *J. Power Sources*, 2015, **300**, 285-293.
- X. Liu, Z. Chang, L. Luo, T. Xu, X. Lei, J. Liu and X. Sun, *Chem. Mater.*, 2014, 26, 1889-1895.
- P. Zhang, F. Sun, Z. Xiang, Z. Shen, J. Yun and D. Cao, *Energy Environ. Sci.*, 2014, 7, 442-450.
- 22. W. Zhang, Z. Y. Wu, H. L. Jiang and S. H. Yu, *J. Am. Chem. Soc.*, 2014, **136**, 14385-14388.
- 23. P. Chen, T.-Y. Xiao, Y.-H. Qian, S.-S. Li and S.-H. Yu, *Adv. Mater.*, 2014, **25**, 3192-3196.
- 24. A. Aijaz, N. Fujiwara and Q. Xu, J. Am. Chem. Soc., 2014, 136, 6790-6793.
- 25. J. Y. Cheon, J. H. Kim, J. H. Kim, K. C. Goddeti, J. Y. Park and S. H. Joo, *J. Am. Chem. Soc.*, 2014, **136**, 8875-8878.
- 26. H. Yang, Y. Zhang, F. Hu and Q. Wang, *Nano letters*, 2015, 15, 7616-7620.
- 27. X. Han, F. Cheng, T. Zhang, J. Yang, Y. Hu and J. Chen, *Adv. Mater.*, 2014, **26**, 2047-2051.
- 28. K. Elumeeva, N. Fechler, T. P. Fellinger and M. Antonietti, *Mater. Horiz.*, 2014, 1, 588-594.
- H. W. Liang, X. Zhuang, S. Brüller, X. Feng and K. Müllen, *Nat. Commun.*, 2014, 5, 4973.
- 30. W. He, C. Jiang, J. Wang and L. Lu, Angew. Chem. Int. Ed., 2014, 53, 9503-9507.
- W. Wei, H. Liang, K. Parvez, X. Zhuang, X. Feng and K. Müllen, *Angew. Chem. Int. Ed.*, 2014, 53, 1570-1574.
- 32. K. Parvez, S. Yang, Y. Hernandez, A. Winter, A. Turchanin, X. Feng and K. Müllen, *ACS Nano*, 2012, **6**, 9541-9550.