Electronic Supplementary Information (ESI)

Facile hydrothermal synthesis of SnCoS₄/graphene composites with excellent electrochemical performances for reversible lithium ion storage

Jianbo Ye, Tao Chen, Qiannan Chen, Weixiang Chen,* Zheting Yu, Shurui Xu Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China. Fax: +86 571 87951895; Tel: +86 571 87952477; E-mail: weixiangchen@zju.edu.cn

TGA was carried out to quantify the composition of SnS₂/GNS, CoS₂/GNS and SnCoS₄/GNS composites. As shown in Fig. S1(a), TGA curve of SnS₂/GNS exhibits three regions of weight loss in the air atmosphere. The initial weight loss below 200 °C is due to the evaporation of adsorbed water in the composite.^{1,2} The second weight loss between 200 °C to 425 °C is attributed to the transformation from SnS_2 to SnO_2^1 and oxidation of oxygen-contained functional group of reduced graphene oxide.^{3,4} The third weight loss in the temperature ranging from 430 °C to 600 °C is assigned to the removal of graphene.^{1,3} Thus, the remaining residue is SnO₂ for SnS₂/GNS composite. As shown in Fig. S1(b), there are several stages of weight loss for CoS₂/GNS, which is similar to that of CoS₂/carbon nanotubes and CoS₂/graphene nanocomposite reported elsewhere.^{5,6} Those several weight losses for CoS₂/GNS in the air atmosphere should include the evaporation of adsorbed water, oxidation of oxygen-contained functional group, reduced graphene oxide and CoS_2 . According to the literatures, ^{5,6} the weight loss from 600 °C to 800 °C should be ascribed to the oxidation of CoS₂ to Co₃O₄. Thus, the remaining residue should be Co₃O₄ for CoS₂/GNS composites. Fig. S1(c) shows that the TGA curve of SnCoS₄/GNS composite also displays several regions of weight loss in the air atmosphere. According to the literatures, $^{1,5,6}\ SnS_2$ and CoS_2 should be transferred to SnO₂ and Co₃O₄ over 800°C, respectively. The reduced graphene oxide (or graphene) also should be completely oxidized to CO₂ over 800 °C.³⁻⁵ Therefore, the

remaining residue was SnO₂ and Co₃O₄ for SnCoS₄/GNS composite.

Fig. S1. The TGA curves of (a) SnS₂/GNS, (b) CoS₂/GNS and (c) SnCoS₄/GNS.

Based on the above investigations, the remaining residue should be SnO_2 for SnS_2/GNS composites, Co_3O_4 for CoS_2/GNS composites, SnO_2 and Co_3O_4 for $SnCoS_4/GNS$ composite. Therefore, the SnS_2 and graphene content of SnS_2/GNS composite can be calculated to be 74.6 wt% and 25.4 wt%, respectively. The CoS_2 and graphene content of CoS_2/GNS composite can be calculated to be 75.8 wt% and 24.2 wt%, respectively. The $SnCoS_4$ and graphene content of $SnCoS_4/GNS$ composite can be calculated to be 72.7 wt% and 27.3 wt%, respectively.

References:

- N. Du, X. Wu, C. Zhai, H. Zhang and D. Yang, J. Alloys Comp., 2013, 580, 457-464.
- J. Li, P. Wu, F. Lou, P. Zhang, Y. Tang, Y. Zhou and T. Lu, *Electrochim. Acta*, 2013, 111, 862-868.
- 3. J. Ye, L. Ma, W. Chen, Y. Ma, F. Huang, C. Gao and J. Y. Lee, J. Mater.

Chem. A, 2015, **3**, 6884-6893.

- W. Xu, Z. Xie, X. Cui, K. Zhao, L. Zhang, G. Dietrich, K. M. Dooley and Y. Wang, ACS Appl. Mater. Interfaces, 2015, 7, 22533-22541.
- Z. X. Huang, Y. Wang, J. I. Wong, W. H. Shi and H. Y. Yang, *Electrochim.* Acta, 2015, 167, 388-395.
- B. Wang, J. Park, D. Su, C. Wang, H. Ahn and G. Wang, J. Mater. Chem., 2012, 22, 15750-15756.