Table S1. Properties and photocatalytic performances of differnt materials in the partial oxidation of cyclohexane into cyclohexanol (CHAoI) and cyclohexanone (CHAone).^[a]

Entry	Sample	S _{BET} /m ² g ^{-1[b]}	V _p /cm ³ g ^{-1[c]}	D _p /nm ^[c]	Yield/µmol (selectivity/% ^[d])			Conversion	TONIE
					CHAol	CHAone	CO ₂	/% ^[e]	TONU
1	P25 TiO ₂	49	-	-	35 (72)	8 (17)	32 (11)	0.26	-
2	TS-1 zeolite	467	0.3 ^[g]	<0.6 ^[h]	2 (40)	3 (60)	n.d.	0.027	0.4
3	SBA-15	1085	1.4	8.1	n.d.	n.d.	n.d.	-	-
4	Ti _{0.02} -SBA	899	1.1	7.1	4 (40)	6 (60)	n.d.	0.054	1
5	Ti _{0.02} -SBA ^[i]				n.d.	n.d.	trace	-	-
6	Fe0.2Ti0.02-SBA	768	1.0	7.1	71 (50)	71 (50)	n.d.	0.77	27
7	Fe0.2Ti0.02-SBA[J]				13 (43)	17 (57)	n.d.	0.16	6
8	Fe0.2Ti0.02-SBA ^[k]				1 (25)	3 (75)	n.d.	0.022	0.8
9	Fe _{0.2} Ti _{0.02} -SBA ^[1]				84 (41)	119 (59)	n.d.	1.1	39
10	Fe0.2Ti0.02-SBA[m]				67 (50)	66 (50)	n.d.	0.72	26
11	Fe _{0.2} Ti _{0.02} -SBA ^[n]				272 (63)	161 (37)	n.d.	2.3	83
12	Fe0.02Ti0.02-SBA	876	1.0	7.1	38 (49)	40 (51)	n.d.	0.42	9
13	Fe _{0.7} -HUS	42	0.17	<0.8 ^[m]	n.d.	n.d.	n.d.	÷.	-
14	α-Fe ₂ O ₃ [o]	11	-	-	n.d.	n.d.	n.d.	-	-
15	α-FeO(OH) ^[o]	12	-	-	2 (67)	1 (33)	n.d.	0.016	-
16	Fe(acac) ₃	0	-	-	9 (47)	6 (31)	25 (22)	0.10	-
17	Fe _{0.01} -P25	43	-	-	13 (32)	24 (60)	19 (8)	0.22	-
18	Fe0.001-P25	42			27 (62)	12 (28)	27 (10)	0.23	-

^[a] Conditions unless otherwise mentioned: stainless-steel reactor, 75 mL; photocatalyst, 30 mg; cyclohexane, 2 mL; solvent (O₂-saturated acetonitrile), 18 mL; irradiation, solar simulator (λ > 300 nm, 1.5 AM) for 24 h. ^[b] Determined using the BET method. ^[c] Determined using the BJH plot. ^[d] {[CHAol] or [CHAone] or 1/6[CO₂]}/{[CHAol] + [CHAone] + 1/6[CO₂]} x 100. ^[e] {[CHAol] + [CHAone] + 1/6[CO₂]}/[cyclohexane added] x 100. ^[f] {[CHAol] + [CHAone]}/[Ti grafted]. ^[g] Determined using the t-plot. ^[h] Determined from the crystal structure and basal spacing for TS-1 and Fe_{0.7}-HUS, respectively.^[i] λ > 420 nm. ^[k] λ > 480 nm. ^[k] 60 mg. ^[i] 48 h. ^[m] 60 mg and 48 h under O₂ atmosphere (250 kPa). ^[n] Determined from the basal spacing. ^[o] The particle sizes are 1 µm and 1-2 µm for α -Fe₂O₃ and α -FeO(OH), respectively.

Fig. S1. (A) XRD patterns and (B) ²⁹Si MAS NMR spectra of (a) the hexadecyltrimethylammonium cation-exchanged form of HUS-2 and (b) Fe_{0.7}-HUS. (C) UV-vis spectra of (a) Fe_{0.7}-HUS and (b) Fe_{0.2}Ti_{0.02}-SBA. The change in the basal spacing and decrease in the Q³/Q⁴ ratios indicate the grafting of Fe(acac)₃ onto the interlayer surface of HUS-2. Like Fe_{0.2}Ti_{0.02}-SBA, Fe_{0.7}-HUS shows absorption bands assignable to isolated tetrahedrally coordinated Fe (< 300 nm), Fe oxide clusters (300~400 nm) and Fe oxide nanoparticles (> 400 nm).

Fig. S2. $N_{\rm 2}$ adsorptio/desorption isotherms of Fe_{\rm 0.7}-HUS.