Supporting Information

Multiple effect of Bi doping to enhanced thermoelectric properties of SnTe

Zhiwei Zhou, Junyou Yang*, Qinghui Jiang, Yubo Luo, Dan Zhang, Yangyang Ren, Xu He, Jiwu Xin

State Key Laboratory of Materials Processing and Die & Mould Technology,
Huazhong University of Science and Technology, Wuhan 430074, P. R China
* To whom correspondence should be addressed. Email: jyyang@mail.hust.edu.cn

1. Rietveld refinements

The PXRD patterns of $Sn_{1-x}Bi_xTe$ (*x*=0, 0.02 0.04 0.06 0.08) have been refined by the GSAS with EXPGUI interface.²⁷⁻²⁸

Fig. S1 Rietveld refinements of $Sn_{1-x}Bi_xTe(x=0, 0.02, 0.04, 0.06, 0.08)$.

2. Elemental mapping

Fig. S2 The elemental mapping of $Sn_{0.94}Bi_{0.06}Te$.

3. Specific heat capacity (C_P)

Fig. S3 The temperature dependence of the specific heat capacity.²⁴

4. The test of reversibility and recyclability

Fig. S4 The test of reversibility for the sample of Sn_{0.94}Bi_{0.06}Te.

Fig. S5 The test of recyclability for the sample of $Sn_{0.94}Bi_{0.06}Te$.

5. Pisarenko line

Figure S6. Room temperature Seebeck coefficient as a function of hole density for Bi doped SnTe. The dotted line is Pisarenko plot expected by a VBM model.

Samples	Effective mass	Densities	Relative	Lorenz number
	m* (m ₀)	(g/cm ³)	densities (%)	$(10^{-8}V^2/K^2)$
x=0	0.179	6.28	96.61	2.4307
<i>x</i> =0.02	0.336	6.27	96.46	2.3402
<i>x</i> = 0.04	0.391	6.29	96.77	2.2518
<i>x</i> = 0.06	0.49	6.32	97.23	2.1235
<i>x</i> = 0.08	0.634	6.34	97.53	1.9956

Table S1. Parameters of all the samples investigated in this study.

The effective mass (m*) is estimated according to the following equations using the observed carrier concentration (n_h) and Seebeck coefficient (S) values:

$$m^{*} = \frac{h^{2}}{2k_{B}T} \left[\frac{n_{h}}{4\pi F_{l/2}(\eta)} \right]^{2/3}$$
(1)

$$S = \pm \frac{k_B}{e} \left(\frac{(r+3/2)F_{r+3/2(\eta)}}{(r+1/2)F_{r+1/2(\eta)}} - \eta \right)$$
(2)

$$F_n(\eta) = \int_0^\infty \frac{x^n}{1 + e^{x - n}} dx \tag{3}$$

Here, η is the reduced Fermi energy, $F_n(\eta)$ is the nth order Fermi integral, κ_B is the Boltzmann constant, *e* is the electron charge, *h* is the Planck constant and *r* is the scattering factor.