Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Novel Three-dimensional Flower-like Porous Al₂O₃ Nanosheets Anchoring hollow NiO Nanoparticles for High-effeciency Lithium Ion Battery

Figure S1 (a) SEM image and (b) XRD pattern of FH-Ni@Al₂O₃.

Figure S2 SEM images of flower-like $Ni@Al_2O_3$ synthesized at (a) 250 and (b) 450 °C, respectively.

Figure S3 XPS of FH-NiO@Al₂O₃. (a) The whole spectrum from 1100-0 eV. (b), (c) and (d) are the XPS spectra of Ni 2p, Al 2p and O 1s, respectively.

Figure S4 TEM images of (a) F-Ni@Al₂O₃-250 and (b)F-Ni@Al₂O₃-450.

Figure S5 (a) and (b) SEM images of flower-like Al₂O₃ nanosheets after dissolution by 1 M HCl. (c) TEM image and (d) XRD pattern of flower-like Al₂O₃ nanosheets.

Figure S6 Nyquist plots of FH-NiO@Al₂O₃ before and after running for 300 cycles.

Figure S7 Galvanostatic charge/discharge curves of flower-like NiO@Al₂O₃ prepared at deferent temperatures at the current density of 500 mA/g.

Figure S8 (a) Galvanostatic charge/discharge curves at the current density of 100 mA/g for 100 cycles. (b) SEM image of flower-like Al_2O_3 nanosheets after 100 cycles.

Figure S9 SEM image of FH-NiO@Al₂O₃ after running for 300 cycles.

Figure S10 (a) SEM image of NiO nanoparticles without Al_2O_3 . (b) Galvanostatic charge/discharge curves of NiO nanoparticles at the current density of 500 mA/g for 200 cycles. (c) Cyclic test and (d) EIS measurement of both FH-NiO@Al_2O_3 and NiO nanoparticles for comparison.