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Schemes and Figures

Scheme S1. Synthesis of PAA homopolymer.
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Scheme S2. Imidization of PAA upon heating.
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Fig. S1. FT-IR spectrum of PAA homopolymer.
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The peak at 1710 cm-1 is ascribed to the stretching of the aromatic carboxyl (C=O) 

group. The peak at 1650 cm-1 is due to the stretching of the imide (C=O). The peak at 

1540 cm-1 is because the stretching (C–N) and variable angle vibration (NH) of the 

imide. The peaks at 1500 cm-1 and 1213 cm-1 are related to the stretching of the 

symmetric benzene (C6H2) and the aromatic ether (C6H4–O–C6H4), respectively. 1H 

NMR analysis in Fig. S2 further confirmed that PAA homopolymer was successfully 

synthesized as peaks a and b are assigned to the hydrogen of –CONH– and –COOH, 

respectively.
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Fig. S2. 1H NMR spectrum of PAA homopolymer in DMSO-d6.
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Fig. S3. 1H NMR spectrum of PAA vesicles cross-linked by melamine in DMSO-d6. 

The molar ratio of melamine to carboxyl group is 0.25.
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Fig. S4. 1H NMR spectrum of PAA vesicles cross-linked by melamine in DMSO-d6. 

The molar ratio of melamine to carboxyl group is 0.5.
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Fig. S5. 1H NMR spectrum of PAA vesicles cross-linked by melamine in DMSO-d6. 

The molar ratio of melamine to carboxyl group is 1.0.
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Fig. S6. Determination of the critical vesiculation concentration (CVC) of PAA.

The critical vesiculation concentration (CVC) of PAA homopolymer is 0.1 μg/mL, 

which is much smaller than traditional block copolymers and homopolymers. As shown 

in Scheme S1, the novel structure of PAA homopolymer causes this phenomenon 

because the hydrophilic moieties are only carboxyl groups while the hydrophobic 

moieties are much more than the hydrophilic moieties. As a result, the solubility of 
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PAA homopolymer is extremely low in water, which means the homopolymer starts 

self-assembling at very low concentration. 
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Fig. S7. Zeta potential of PAA vesicles without and with cross-linking by melamine.
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Fig. S8. DLS studies of PAA vesicles cross-linked by melamine before ultrasound 

treatment. The high PDI is because of the aggregation of vesicles. Curves a-c 

correspond to different molar ratios of melamine to carboxyl group (0.25, 0.5, 1.0), 

respectively.
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Fig. S9. DLS studies of PAA vesicles without and with cross-linking by melamine after 

ultrasound treatment for 2 min. Curves a-d correspond to different molar ratios of 

melamine to carboxyl group (0, 0.25, 0.5, 1.0), respectively.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
 

Vo
lu

me
 A

bs
or

pt
io

n 
(cm

3 /g
)

Relative Pressure (P/P0)

0 10 20 30 40 50 60 70 80
-0.02
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

 

dV
/d

 (l
og

D)

Diameter (nm)

Fig. S10. Nitrogen adsorption-desorption isotherm and corresponding pore size 

distribution curves of PAA vesicles without cross-linking.



S8

30 60 90 120 150 180 210
-10

-8

-6

-4

-2

0

 

 

He
at

 fl
ow

 (W
/g

)

Temperature (oC)

T = 128 oC
Imidization

Fig. S11. DSC curve of PAA homopolymer. 

During the carbonization process, when the temperature reaches 128 oC, the PAA 

homopolymer undergoes imidization reaction between amino and carboxyl groups and 

gives two equivalents of water (Scheme S2). With the increase of temperature, the 

imidization finishes and the carbonization process starts.
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Fig. S12. TG curves of PAA vesicles (Vesicle-0 and Vesicle-1.0).
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Either for Vesicle-0 or Vesicle-1.0, the chemical reactions are similar when heated 

in an inert atmosphere. PAA homopolymer vesicles undergo four stages at different 

temperatures to form inorganic hollow carbon spheres. As shown in Fig. S12, at the 

first stage, the sample will lose water and moisture to give dry PAA vesicles; while the 

temperature increases to above 128 oC, the imidization reaction between the repeat units 

takes place and gives two equivalents of water (Scheme S2 and Fig. S11). The 

imidization reaction finishes at nearly 300 oC, and about 80% of the mass of the samples 

remains. Continuing to increase the temperature, the carbonization process starts. At 

this stage, the sample will deoxidize and dehydrogenize to form carbon framework 

gradually. When the temperature reaches 600 oC, the carbonization procedure almost 

completes. 47.4% and 43.6% of the mass preserves of Vesicle-0 and Vesicle-1.0, 

respectively. Further increasing the temperature, the carbon framework begins to 

decompose and the mesoporous structure forms, which was discussed in the main text.

(A) (B)

Fig. S13. (A) TEM and (B) corresponding SEM analysis of nitrogen-doped hollow 

carbon spheres (N-HCS-1.0).
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Fig. S14. High resolution TEM image of hollow carbon spheres (N-HCS-0).
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Fig. S15. XPS spectrum of nitrogen-doped hollow carbon spheres: A (N-HCS-0), B (N-

HCS-0.25), C (N-HCS-0.5) and D (N-HCS-1.0).
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Fig. S16. CV curves at different scan rates and charge-discharge curves of N-HCSs at 

various current densities of (A and B) N-HCS-0, (C and D) N-HCS-0.25, (E and F) N-

HCS-0.5 and (G and H) N-HCS-1.0.


