

Electronic Supplementary Information (ESI)

FeO_x @carbon yolk/shell nanowires with tailored void spaces as stable and high-capacity anodes for lithium ion battery

Xueying Li,^{a,b} Yuanyuan Ma,^{*a,c} Guozhong Cao^d and Yongquan Qu,^{*a,c}

^a Center for Applied Chemical Research, Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China

^b School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.

^c MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China

^d Department of Materials and Engineering, University of Washington, Seattle, Washington, 98195-2120, United States

*To whom correspondence should be addressed: <u>yyma@mail.xjtu.edu.cn</u>;

yongquan@mail.xjtu.edu.cn

Fig. S2 (a) N₂ adsorption-desorption isotherms profile of α -Fe₂O₃ nanowires; (b) Pore size distribution of α -Fe₂O₃ nanowires

Fig. S3 α -Fe₂O₃@SiO₂ with different thickness of silica layer (a) 20nm; (b) 80nm

Fig. S4 The FT-IR spectra of α-Fe₂O₃@SiO₂@PAN

Fig. S5 (a) TEM image of $FeO_x@SiO_2@C-20$; (b) TEM image of $FeO_x@SiO_2@C-80$

Fig. S6 (a, d) TEM image and SEM image of $FeO_x@C-20$; (b, e) TEM image and SEM image of $FeO_x@C-40$; (c, f) TEM image and SEM image of $FeO_x@C-80$.

Fig. S7 TEM image of α -Fe₂O₃@C nanowires without the step of silica layer coating

Fig. S8 N_2 adsorption-desorption isotherms profile of FeO_x@C yolk-shell nanowires

Fig. S9 (a) The XPS spectra of $\text{FeO}_x@\text{C-20}$; (b) The XPS spectra of $\text{FeO}_x@\text{C-40}$; (c) The XPS spectra of $\text{FeO}_x@\text{C-80}$; (d) The high resolution of Fe 2p for these three $\text{FeO}_x@\text{C}$ yolk-shell structures; (e) The high resolution of N 1s for these three $\text{FeO}_x@\text{C}$ yolk-shell structures

Fig. S10 (a) CV curves of $FeO_x@C-20$ yolk-shell nanowires at a scan rate of 0.5mV/s in the potential range from 0V to 3.0V vs. Li/Li⁺; (b) CV curves of $FeO_x@C-80$ yolk-shell nanowires at a scan rate of 0.5mV/s in the potential range from 0V to 3.0V vs. Li/Li⁺; (c) CV curves of bare α -Fe₂O₃ nanowires at a scan rate of 0.5mV/s in the potential range from 0V to 3.0V vs. Li/Li⁺;

Parameters	FeO _x @C-20	FeOx@C-40	FeOx@C-80
R _{FeOx} (nm)	75	75	75
R _(FeOx+void) (nm)	93	107	149
L (nm)	L	L	L
V _{FeOx} (nm ³)	$17671 \times L$	17671 × L	17671 × L
V _(FeOx+void)	$27171 \times L$	$35968 \times L$	$69746 \times L$
$\mathbf{V}_{\mathbf{void}}$	9500 imes L	$18297 \times L$	$52075 \times L$
r (V _{void} /V _{FeOx})	0.54	1.04	2.94

Tab. S1 The volume of FeO_x , void space and the lithiated FeO_x in three samples

The data in the table are obtained by the following formula:

$V = \pi R^2 L$,

 $V_{void} = V_{(FeOx+void)} - V_{FeOx}$,

V represents the volume of materials, R represents the radius of materials, L represents the length of the materials. The values of R in the formula are the statistical averages from the TEM images.

Fig. S11 The volumetric capacities versus cycle number of three $FeO_x@C$ yolk/shell nanowires at 200mA/g for 400cycles.