Supporting information

Bean pod-like Si@dopamine-derived amorphous carbon@N-doped

graphene nanosheet scrolls for high performance lithium storage

Wei Sun,^{a,b} Liu Wan,^a Xiaocheng Li,^{a*} Xinhong Zhao,^{b*} Xingbin Yan^a

Fig. S1 AFM image of as-prepared GO nanosheets and corresponding cross-sectional profile. The GO nanosheets have a size of 4-6 μ m and thickness of 1.2 nm.

Figure S2 (a) Low magnification and (b) high magnification HRTEM image of dopamine molecules decorated on surface of SiNPs after annealing at 800 °C. It can be observed that the adsorbed dopamine molecules are converted to a thin layer of amorphous carbon with a thickness of ~5 nm after thermal annealing. The dopamine derived amorphous carbon is denoted as DDAC.

^{* *}Corresponding author. Tel./fax: +86-931-4968040; Email: xiaocheng@licp.cas.cn

Fig. S3 Survey XPS spectra of (a) Si@DDAC and (b) GNS (73.6 wt% of Si, Sample B).

Fig. S4 Initial discharge/charge curves of rGO electrode at a current density of 0.3 A g⁻¹.

Fig. S5 Cycling stability of rGO at current density of 0.3 A $g^{\text{-}1}$

previous reports.						
Electrode structure	Preparation method	charge capacity (1 st)	CE (1 st)	Rate capability	Cycling stability	Ref.
Lily-like GS wrapped SiNPs	Spray-drying	1525 mAh/g at 0.1A/g	70%	1300 mAh/g at 0.6 A/g	98.4% after 30 cycles (0.2 A/g) C	23
Crumpled G-Encapsulated Si NPs	Ultrasonification-assisted furnace drying	1200 mAh/g at 0.2 A/g	73%	>600 mAh/g at 4 A/g	83% after 250 cycles at1A/g	22
3D G-wrapped porous Si sphere	LBL & mgnesiothermic reduction	>2750 mAh/g at 0.21A/g ^E	N.A.	697.8 mA h g ⁻¹ at 2.1 A/g	1299 mAh/g after 25 cycles at 0.21 A /g	34
Multilayered Si NPs/rGO	Alternating dip-coating	2300 mAh/g at 0.12A/g	73.0%	700 mAh/g at 24 A/g	765 mAh g ⁻¹ (7.2A/g), no fading	58
mSi@GNG	Freeze-drying & hydrazine reduction	1551 mAh/g at 0.1 A/g	85.6%	548 mAh/g at 0.5 A/g	93.1% after 80 cycles at 0.5 A/g $^{\rm C}$	59
CNFs/SiNPs@rGO	Electrospining & electrostatic self-assembly	1519 mAh/g at 0.89A/g	38%	N.A.	69% after 200 cycles at 0.89A/g ^C	60
NG/Si@NC	Freeze-drying&cabonization	1138 mAh/g at 0.5 A/g ^c	76%	975 mAh/g at 2 A/g	82% after 100 cycles at 0.5 A/g	41
Si@DDAC@N-GNSs	Freeze-drying&cabonization	2243 mAh/g at 0.3 A/g	74.9%	947.8 mAh/g at 3 A/g	91.5% after 110 cycles at 2 A/g	Our work

Table S1 Lithium storage performance comparison of Si@DDAC@N-GNS and Si-based anodes in

C Calculated from the published data. E Estimated from published graph. G, rGO, CNF, SiNPs, mSi and GNG represent for graphene, reduced graphene oxide, carbon nanofiber, silicon nanoparticles, micro-sized silicon and giant nitrogen-doped graphene, respectively. CE stands for Coulombic efficiency. LBL represents for layer-by-layer assembly.